

Dolores Canyon Solar Project County Road M.9 Near Cahone, Colorado

> January 15, 2021 Terracon Project No. 61195223

Prepared for:

JSI Construction Group LLC Boulder, Colorado

Prepared by:

Terracon Consultants, Inc. Midvale, Utah

Environmental Facilities Geotechnical Materials

January 15, 2021

Terracon GeoReport

JSI Construction Group LLC 1710 29th Street, Suite 1068 Boulder, Colorado 80301

Attn: Mr. Greg Bunce

P: 617-462-3018

E: gbunce@juwiamericas.com

Re: Revised Geotechnical Engineering Report

Dolores Canyon Solar Project

County Road M.9

Near Cahone, Colorado

Terracon Project No. 61195223

Mr. Bunce:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the project referenced above. This study was performed in general accordance with Terracon Proposal No. P61195223 dated December 12, 2019, and our Work Order No. 03 dated. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations and access roads for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

Charles V. Molthen, P.E. Department Manager I

Scott B. Myers, P.E. Regional Senior Consultant

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

REPORT TOPICS

REPORT COVER PAGE	
REPORT COVER LETTER TO SIGN	1
REPORT TOPICS	
REPORT SUMMARY	
INTRODUCTION	
SITE CONDITIONS	
PROJECT DESCRIPTION	
GEOTECHNICAL CHARACTERIZATION	5
Local Geology	5
Typical Profile	
Laboratory Test Results	
Laboratory Thermal Resistivity	
Field Electrical Resistivity Testing	
Groundwater Conditions	
GEOTECHNICAL OVERVIEW	11
Shallow Bedrock	11
EARTHWORK	11
Site Preparation	
Material Types	
Compaction Requirements	14
Excavation and Trench Construction	
Utility Trenches	
Slopes	
Earthwork Construction Considerations	
FOUNDATIONS	17
Spread Footing Foundation Design Recommendations	17
Reinforced Mat Foundation Design Recommendations	19
Driven Pile Design Parameters	
Driven Pile Lateral Loading Driven Pile Construction Considerations	
SEISMIC CONSIDERATIONSACCESS ROADWAYS	
Aggregate-Surfaced Roadway Design Recommendations	
Pavement and Roadway Design and Construction Considerations	
GENERAL COMMENTS	
FIGURES	
ATTACHMENTS	
EXPLORATION AND TESTING PROCEDURES	
Field Exploration	
Laboratory Testing	2
APPENDIX A – SITE LOCATION AND EXPLORATION PLANS	3

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

APPENDIX B – EXPLORATION RESULTS	4
APPENDIX C - LABORATORY TEST RESULTS	1

Note: This report was originally delivered in a web-based format. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES APPENDIX A – SITE LOCATION AND EXPLORATION PLANS

(Exhibits A-1 through A-3)

APPENDIX B - EXPLORATION RESULTS

(Exhibits B-1 through B-120)

APPENDIX C – LABORATORY TEST RESULTS

(Exhibits C-1 through C-49)

Note: Refer to each individual Attachment cover page for a listing of contents.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

REPORT SUMMARY

A geotechnical engineering exploration has been performed for the proposed Dolores solar project to be located on Country Road M.9 near Near Cahone, Colorado. Based on the information obtained from this subsurface exploration and the laboratory testing completed, the site appears suitable for the proposed construction; however, the following geotechnical conditions will need to be considered:

- Based on the geotechnical engineering analyses, the proposed solar arrays can be constructed on driven H-piles, W-members, C-channels, or pipe pile foundation systems.
- Based on the geotechnical engineering analyses, the proposed electrical equipment may be supported on shallow foundations bottomed on native soils or new engineered fill, provided the owner is willing to accept the associated risk of movement.
- Aggregate-surfaced access drives for post-construction traffic should consist of a minimum of 5 inches of aggregate base course over properly prepared subgrade soils. Compacted native soil access roads for post-construction traffic should consist of a minimum of 12 inches of compacted on-site soils. Aggregate-surfaced roads and compacted native soil roads, regardless of the section thickness or subgrade preparation measures, will require on-going maintenance and repairs to keep them in a serviceable condition.
- Based on the results of the laboratory testing and our experience in the area, the clay soils exhibit a slight expansive potential, while the native sand soils and sandstone bedrock are considered to be essentially non-expansive. Based on our experience, the claystone in the area has low expansive potential.
- Based on the 2015 International Building Code (IBC) Section 1613.3.2 and the subsurface conditions encountered in the borings, the seismic site classification for this site is C, D.
- The amount of movement associated with foundations, slabs-on-grade, etc. will be related to the wetting of the underlying soils. Therefore, it is imperative the recommendations outlined in the **Grading and Drainage** subsection of **Earthwork** be followed to reduce potential movement. Moisture conditioning and/or replacement of the on-site fill materials and/or native soils and bedrock should follow the recommendations outlined in **Earthwork**.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **General Comments** should be read for an understanding of the report limitations.

Dolores Canyon Solar Project
County Road M.9
Near Cahone, Colorado
Terracon Project No. 61195223
January 15, 2021

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed Dolores Canyon solar project to be located on County Road M.9 near Cahone, Colorado.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil and bedrock conditions
- Groundwater levels
- Earthwork
- Grading and drainage

- Foundation design and construction
- Seismic site classification
- Access road design and construction

The original geotechnical engineering Scope of Services for this project included:

- 45 exploratory borings (designated as Boring Nos. 1 through 45) to a depth of about 20 feet below existing site grades
- 25 test pits (designated as Test Pit Nos. TP-1 through TP-25) to depths of about 10 to 15 feet below existing site grades
- 13 field electrical resistivity tests (designated as R1 through R13; Wenner Four-Electrode Method)

Subsequently the follow geotechnical engineering Scope of Services were added for this project:

- 23 exploratory borings (designated as Boring Nos. 1-1 through 6-4) to a depth of about
 20 feet below existing site grades
- 9 test pits (designated as Test Pit Nos. TP-1-1 through TP-4-2) to depths of about 10 to 15 feet below existing site grades
- 3 field electrical resistivity tests (designated as FER-1 through FER-3; Wenner Four-Electrode Method)

Plans showing the site and exploration locations are shown in Appendix A – **Site Location and Exploration Plans**. The results of the laboratory testing performed on soil and bedrock samples obtained from the site during the field exploration are included on the boring logs in Appendix B – **Exploration Results** and/or as separate graphs in Appendix C – **Laboratory Test Results**.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration.

Item	Description
Project Location	The project is to be located on County Road M.9 near Cahone, Colorado. The general location of the proposed project is 37.703473 ° N, 108.751219 ° W.
Existing Improvements	The proposed solar array area is undeveloped and is currently used for agricultural purposes.
Current Ground Cover	Ground cover on the subject site consists of crops and barren land.
Existing Topography	The site grades appear to be rolling, with an elevation difference up to 50 feet between the highest areas of the site and the lowest, near the drainage features.

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed during project planning. Our final understanding of the project conditions is as follows:

Item	Description					
Information Provided	JSI Construction Group LLC (juwi) provided the following documents and files: CO497 Dolores Canyon Solar SOW 191203.pdf (hereafter referred to as SOW) Dolores Canyon Solar Project Limits.kmz					

Dolores Canyon Solar Project Near Cahone, Colorado January 15, 2021 Terracon Project No. 61195223

Item	Description
Project Description	We understand that the approximate 1,780-acre site will be developed as a 60 MWac photovoltaic (PV) solar power facility. The SOW indicates the project will consist of PV modules aligned in arrays and affixed to a single-axis tracking system. The site plan provided by juwi indicates a project substation and storage shed will be constructed on the east side of the site, and site access drives and inverters/transformers will be constructed throughout the site. The site plan also indicates a security fence will be constructed around the perimeter of the site. We assume the solar facility will also include buried power lines. We assume the solar array field grade will follow the existing site grade with minimum grading required to bring the site to finished grade; However, some grading will likely be required to construct access roads. The SOW indicates the PV modules will be attached to a racking system
	that is planned to be supported on driven steel piles.
Anticipated Foundation Systems	Solar Array: Driven piles or helical pilesEquipment Pads: Mat foundation
Maximum Loads	Solar Array: Compression loads: 3.5 kips (assumed) Uplift loads: 3 kips (assumed) Shear (lateral) loads: 3.5 kips (assumed) Equipment Pads: Mat foundation: 2,000 pounds per square foot (psf) (assumed)
Grading/Slopes	Less than 3 feet (+/-) max (assumed), though some site access drives may require up to 10 feet (+/-) if they cross the existing drainage features at the site.
Excavation Depth	3 feet (assumed)
Below-Grade Structures	None indicated
Free-Standing Retaining Walls	None indicated
Pavements	We understand that access road cross sections used for construction of the project will be the responsibility of the EPC contractor, and that only post-construction traffic with an allowable rut depth of up to 2 inches is to be analyzed for in this report. We assume low-volume, aggregate-surfaced and native soil access roads experience primarily light pickup truck traffic and vehicles will travel over the access roads only once per week. The aggregate-surfaced access roads will be designed to accommodate a fire truck (about 85,000 lbs).

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

GEOTECHNICAL CHARACTERIZATION

We have developed a general characterization of the subsurface soil, bedrock, and groundwater conditions based upon our review of the data and our understanding of the geologic setting and planned construction. The following sections provide our geotechnical characterization.

The geotechnical characterization forms the basis of our geotechnical calculations and evaluation of site preparation, foundation options, and pavement options. As noted in **General Comments**, the characterization is based upon widely spaced exploration points across the site, and variations are likely.

Local Geology

Surficial geologic conditions at the site, as mapped by the U.S. Geological Survey (USGS) consist of eolian deposits and Dakota Sandstone and Burro Canyon Formation. These materials, as mapped in this area, consist of wind swept clays and silts underlain by sandstone.

Geologic hazards at the site are anticipated to be low. Seismic activity in the area is anticipated to be low; and from a structural standpoint, the property should be relatively stable. With proper site grading around the proposed structures, erosional problems at the site should be reduced.

The geologic conditions presented in this section were obtained by locating the subject site on available large-scale geologic maps. In addition, the large-scale geologic maps describe only general trends. Local variations are possible and site-specific geology may differ from those described above. A site-specific detailed geologic description is beyond the scope of this project.

Typical Profile

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of site preparation and foundation options. Conditions encountered at each exploration point are indicated on the individual logs. The individual logs can be found in the **Exploration Results** section and the GeoModel can be found in the **Figures** section of this report.

As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each boring location, refer to the GeoModel.

Model Layer	Layer Name	General Description		
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand		
2	Silt	Silts with varying amounts of sand		
3	Sands	Sands with varying amounts of silt and clay		
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.		

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Stratification boundaries on the boring logs represent the approximate location of changes in soil and material types; in situ, the transition between materials may be gradual. Further details of the borings can be found on the boring logs in Appendix B – Exploration Results.

Laboratory Test Results

Based on the results of the laboratory testing and our experience in the area, the clay soils have nil to slight expansive potential, while the native sand soils and sandstone bedrock are considered to be essentially non-expansive. Based on our experience, the claystone in the area has low expansive potential. A summary of laboratory test results is included in Appendix C – Laboratory Test Results.

Corrosion Considerations

The table below lists the results of laboratory soluble sulfate, sulfide, soluble chloride, minimum electrical resistivity, RedOx potential, and pH testing. The values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

Boring	Sample Depth	рН	Sulfates (ppm)	Sulfides (ppm)	Chlorides (ppm)	Red- Ox (mV)	Resistivity As Received (ohm-cm)	Resistivity (Saturated) (ohm-cm)
BH-2	0-2	7.13	133	Nil	27	+687	19,400	2,546
BH-4	5-7	7.49	138	Nil	30	+690	6,499	1,943
BH-6	7.5-9.5	7.88	113	Nil	33	+684	4,171	1,742
BH-8	0-2	7.45	127	Nil	33	+695	2,813	2,613
BH-10	2.5-4.5	7.58	122	Nil	33	+690	1,746	1,072
BH-12	7.5-9.5	7.70	171	Nil	27	+691	3,977	1,876
BH-14	5-7	7.63	107	Nil	38	+690	1,843	1,608
BH-16	2.5-4.5	7.70	37	Nil	63	+687	2,619	1,742
BH-18	2-4	7.98	128	Nil	55	+685	4,171	2,077
BH-20	7.5-9.5	8.26	163	Nil	52	+684	2,813	2,211
BH-22	2.5-4.5	8.11	189	Nil	43	+686	2,910	2,613
BH-24	0-2	7.90	68	Nil	50	+688	3,007	2,613
BH-26	5-6.5	8.37	147	Nil	40	+687	1,940	1,876
BH-29	2.5-4.5	8.01	75	Nil	38	+689	13,580	2,546
BH-30	5-7	8.15	32	Nil	52	+686	5,917	4,355
BH-32	2.5-4.5	8.01	45	Nil	33	+685	8,148	3,350
BH-34	7.5-8.5	8.27	47	Nil	72	+683	17,460	1,809
BH-36	5-7	8.20	54	Nil	27	+688	5,432	3,015
BH-38	2.5-3.5	8.07	195	Nil	58	+683	3,589	2,278
BH-40	5-7	7.64	197	Nil	120	+678	4,268	1,407

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Boring	Sample Depth	рН	Sulfates (ppm)	Sulfides (ppm)	Chlorides (ppm)	Red- Ox (mV)	Resistivity As Received (ohm-cm)	Resistivity (Saturated) (ohm-cm)
BH-42	2.5-3.5	8.44	171	Nil	43	+684	8,827	2,881
BH-44	2.5-35	8.16	156	Nil	40	+685	3,298	2,211

Analytical test results for samples collected during the additional mobilization were not available at the time of this draft.

Boring	Sample Depth	Buffer Capacity, ASTM E1910 (milliequivalent s of base per gram of product)*reage nt: 0.05 N HCI	Neutral Salts, WREP-125, 4th ed. (ds m-1)	Boring	Sample Depth	Buffer Capacity, ASTM E1910 (milliequivale nts of base per gram of product)*reag ent: 0.05 N HCI	Neutral Salts, WREP- 125, 4th ed. (ds m-1)
BH-2	0-2	0.057	2.20E-04	BH-24	0-2	0.060	5.33E-04
BH-4	5-7	0.035	1.70E-04	BH-26	5-6.5	0.060	4.59E-04
BH-6	7.5-9.5	0.070	2.17E-04	BH-29	2.5-4.5	0.040	2.11E-04
BH-8	0-2	0.025	1.01E-04	BH-30	5-7	0.025	5.27E-04
BH-10	2.5-4.5	0.040	1.89E-04	BH-32	2.5-4.5	0.065	4.80E-04
BH-12	7.5-9.5	0.055	2.23E-04	BH-34	7.5-8.5	0.085	4.86E-04
BH-14	5-7	0.035	2.09E-04	BH-36	5-7	0.070	3.06E-04
BH-16	2.5-4.5	0.045	3.51E-04	BH-38	2.5-3.5	0.055	3.99E-04
BH-18	2-4	0.055	3.11E-04	BH-40	5-7	0.060	6.38E-04
BH-20	7.5-9.5	0.045	3.20E-04	BH-42	2.5-3.5	0.045	4.32E-04
BH-22	2.5-4.5	0.045	2.13E-04	BH-44	2.5-35	0.040	7.14E-04

These test results are provided to assist in determining the type and degree of corrosion protection that may be required for buried metal, including pile foundations. We recommend the structural engineer design a suitable corrosion protection system for underground metal structures or components.

Refer to the **Exhibit B - Laboratory Testing** for the complete results of the various corrosivity testing conducted on the site soils in conjunction with this geotechnical exploration.

Laboratory Thermal Resistivity

Various in-situ and bulk samples collected were sent to Geotherm USA for thermal resistivity tests. The testing was performed on specimens remolded to about 80 and 90 percent of the

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

maximum dry unit weight as determined by ASTM D698 (Standard Proctor), and to the approximate in-situ density. In-situ densities were collected utilizing a 3 inch (O.D.) ring sampler. Thermal dry-out curves were generated for each sample from the optimum moisture content down to zero moisture content. Testing was conducted in general accordance with the IEEE standard 442-2017. The results are summarized in the table below and the Geotherm USA report is presented in Appendix C – Laboratory Test Results.

Test Pit/Boring No.	Compaction Effort	Dry Density (pcf)	Optimum Moisture	Thermal Resistivity (°C-cm/W)	
(Depth, feet)	(%, ASTM D698)	(pci)	Content (%)	Wet ²	Dry
BH-4 @ 2.5'- 3.5'	1	88	10	75	182
BH-11 @ 2.5'- 3.5	1	109	17	63	146
BH-15 @ 2.5'- 3.5'	1	100	14	73	156
BH-21 @ 5.0'- 6.0'	1	108	18	60	145
BH-26 @ 2.5'- 3.5'	1	83	11	72	173
BH-33 @ 5.0'- 6.0'	1	101	11	77	190
BH-41 @ 5.0'- 6.0'	1	111	17	62	141
TP-1 @ 3'-3.5'	80	87	15	105	236
17-1 @ 3-3.5	90	98	15	87	180
TP-2 @ 3'-3.5'	80	88	16	128	266
TD 4 @ 01 0 51	80	88	4.4	102	237
TP-4 @ 3'-3.5'	90	90	14	79	182
TD 7 @ 0/ 0 5/	80	85	4.4	115	278
TP-7 @ 3'-3.5'	90	96	14	94	199
TP-8 @ 3'-3.5'	80	89	15	118	266
TP-10 @ 3'- 3.5'	80	85	10	133	285

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Test Pit/Boring No.	Compaction Effort	Effort Dry Density	Optimum Moisture	Thermal Resistivity (°C-cm/W)	
(Depth, feet)	(%, ASTM D698)	(pcf)	Content (%)	Wet ²	Dry
TP-12 @ 3'- 3.5'	80	87	16	119	235
TP-15 @ 3'-	80	87	4.4	122	257
3.5'	90	98	14	92	181
TP-18 @ 3'- 3.5'	80	90	14	115	244
TP-20 @ 3'-	80	87	45	121	263
3.5'	90	98	15	93	185
TP-22 @ 1.5'- 2'	80	86	15	129	270
TP-24 @ 3'-	80	89	4.4	104	249
3.5'	90	101	14	83	177
TP 1-1 @ 3'- 3.5'	80	86	18	102	289
TP 1-2 @ 3'- 3.5'	90	101	15	70	193
TP 2-1 @ 3'- 3.5'	80	89	16	85	242
TP2-2 @ 3'- 3.5'	90	97	16	76	208
TP 2-3 @ 3'- 3.5'	80	90	15	84	240
TP 3-1 @ 3'- 3.5'	80	87	16	88	249
TP 3-2 @ 3'- 3.5'	90	95	19	73	195
TP 4-1 @ 3'- 3.5'	80	86	17	89	286
TP 4-2 @ 3'- 3.5'	90	86	18	72	187
B-1-3 @ 2.5'- 4.5'	1	109	13	61	152
B-2-4 @ 2.5'- 4.5'	1	104	13	60	148

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Test Pit/Boring No.	Compaction Effort	Dry Density (pcf)	Optimum Moisture	Thermal Resistivity (°C-cm/W)	
(Depth, feet)	(%, ASTM D698)	(pci)	Content (%)	Wet ²	Dry
B-3-2 @ 2.5'- 4.5'	1	109	8	95	183
B-4-3 @ 2.5'- 4.5'	1	119	12	62	123
B-6-1 @ 7.5'- 8.8'	1	108	10	66	130
B-6-2 @ 5.0'- 7.0'	1	100	11	74	170
B-6-3 @ 5.0'- 7.0'	1	116	15	51	122
B-6-4 @ 5.0'- 7.0'	1	112	13	60	150

^{1.} In-situ density and moisture;

Field Electrical Resistivity Testing

Field electrical resistivity tests were performed at 13 locations using a Mini-Res ground resistance meter and the Wenner four-point test method. The field electrical resistivity test locations are shown in Appendix A – Site Location and Exploration Plans. The field resistivity survey procedures are discussed in Exploration and Testing Procedures. The field resistivity test results are presented in Appendix B – Exploration Results.

A qualified corrosion engineer should be consulted to assess the corrosion potential of the subgrade soils with regard to underground utilities and structures.

Groundwater Conditions

Groundwater was not encountered during the time of drilling and test pit excavation. Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the borings were performed. Groundwater levels during construction or at other times in the life of the structures may be higher or lower than the levels indicated on the boring or test pit logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

^{2.} Sample prepared at optimum moisture content.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

GEOTECHNICAL OVERVIEW

Based on subsurface conditions encountered in the borings and test pits, the site appears suitable for the proposed construction from a geotechnical point of view provided certain precautions and design and construction recommendations outlined in this report are followed. We have identified geotechnical conditions that could impact design and construction of the proposed improvements.

Shallow Bedrock

Shallow Bedrock: Bedrock was encountered as shallow as approximately 2 to 6 feet. Bedrock may cause practical driving refusal of piles. Installation of utilities using cable plowing techniques may be difficult due to the presence of shallow bedrock. Pre-ripping the proposed cable alignments will most likely be necessary for a large portion of the site. In addition, we anticipate there may be portions of the site where cable plowing may not be feasible. The bedrock appears to be rippable based on auguring resistance, additional geophysical exploration will be needed to confirm rippability of bedrock.

Geotechnical recommendations contained in this report are based upon the results of field and laboratory testing (which are presented in Appendices B and C), engineering analyses, and our current understanding of the proposed project

The **General Comments** section provides an understanding of the report limitations.

EARTHWORK

The following presents recommendations for site preparation, excavation, subgrade preparation, and placement of engineered fills on the project. All earthwork on the project should be observed and evaluated by Terracon.

Site Preparation

Strip and remove existing vegetation, organics, and other deleterious materials from proposed improvement areas and areas to receive fill. All exposed surfaces should be free of mounds and depressions that could prevent uniform compaction. In the proposed solar array field, stripping of topsoil and vegetation may not be necessary if final grades are the same as the existing grades. Keeping existing topsoil and vegetation at the array field could minimize stormwater erosion during construction and maintain overall ground surface stability for the life span of the solar energy center.

Stripped materials consisting of vegetation (topsoil), unsuitable fills, and organic materials should be wasted from the site or used to revegetate landscaped areas or exposed slopes after completion of grading operations.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Where possible, the site should be initially graded to create a relatively level surface to receive fill and to provide for a relatively uniform thickness of fill beneath the proposed improvement areas. All exposed areas that will receive fill, once properly cleared, should be scarified to a minimum depth of 12 inches, conditioned to near optimum moisture content, and compacted as stated below in the **Compaction Requirements** section. It is imperative the moisture content of prepared materials be protected from moisture loss. Refer to the **Access Roadways** section of this report for subgrade preparation recommendations related to aggregate-surfaced roadways and compacted native soil access roads.

Although evidence of underground facilities such as grease pits, septic tanks, and basements was not observed during our exploration, such features could be encountered during construction. If unexpected fills or underground facilities are encountered, such features should be removed, and the excavation should be thoroughly cleaned prior to backfill placement and/or construction.

It is anticipated that excavations into the overburden soils for the proposed construction can be accomplished with conventional earthmoving equipment.

Depending upon seasonal conditions, surface water may infiltrate into the excavations on the site. Water seeping into excavations at this site could most likely be controlled by shallow trenches leading to a sump pit where the water could be removed by pumping.

The stability of subgrade soils may be affected by precipitation, repetitive construction traffic, or other factors. If unstable conditions are encountered or develop during construction, workability may be improved by overexcavation of wet zones and mixing these soils with crushed gravel. Use of geotextiles could also be considered as a stabilization technique. Lightweight excavation equipment may be required to reduce subgrade pumping.

Shrinkage and Bulking

For balancing grading plans, estimated shrink or swell of soils due to the loose or soft existing conditions when used as compacted fill following recommendations in this report are as follows:

Soil Type	Shrinkage or Bulking Factors ¹			
Residual Soils	0.75 to 0.85 (Shrinkage)			
1. Shrinkage and Bulking Factors are based on Naval Facilities' NAVFAC DM 7.02 Manual, pg. 7.2-53.				

Material Types

Fill for this project should consist of engineered fill. Engineered fill is fill that meets the criteria presented in this report and has been properly documented.

Engineered fill should meet the following material property requirements:

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Fill Type ^{1,2}	USCS Classification	Acceptable Location for Placement		
Topsoil	N/A	Topsoil may be used in landscaping areas and within the upper 2 feet of areas surrounding photovoltaic racking systems but should not be used below foundations or the access road.		
Tilled soils	N/A	Tilled soils are considered suitable for reuse as compacted fill below foundation, slab, and access road areas, and as general fill for this project, provided any organics and other deleterious materials are removed.		
On-site clay soils	CL, CH	On-site clay soils are considered suitable for reuse as compacted fill below foundation, slab, and access road areas, and as general fill for this project.		
On-site sand soils	SP, SC, SM, SP-SM, SW	On-site sand soils are considered suitable for reuse as compacted fill below foundation, slab, and access road areas and as general fill for this project.		
Imported soils	Varies	Imported soils meeting the gradation outlined herein can be considered acceptable for use as engineered fill beneath slabs and pavements.		

Controlled, compacted fill should consist of approved materials that are free of organic matter and debris.
 Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the geotechnical engineer for evaluation.

Imported soils for engineered fill (if required) should meet the following material property requirements:

Gradation	Percent Finer by Weight (ASTM C136)			
3"	100			
No. 4 Sieve	50-100			
No. 200 Sieve	15-85			

- Plasticity Index 15 (max)
- Maximum Expansive Potential (%) 0.5*

Imported non-frost susceptible soils should meet the following material property requirements:

Gradation	Percent Finer by Weight (ASTM C136)			
3"	100			

^{2.} Care should be taken during the fill placement process to avoid zones of dis-similar fill. Improvements constructed over varying fill types are at a higher risk of differential movement compared to improvements over a uniform fill zone.

^{*}Measured on a sample compacted to approximately 95 percent of the ASTM D698 maximum dry density at optimum water content. The sample is confined under a 200-psf surcharge and submerged.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Gradation	Percent Finer by Weight (ASTM C136)			
No. 4 Sieve	50-100			
No. 200 Sieve	6 (max)			

- Liquid Limit......NV
- Plasticity Index NP

Compaction Requirements

Engineered fill should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift.

Item	Description
	8 inches or less in loose thickness when heavy, self- propelled compaction equipment is used
Fill Lift Thickness	4 to 6 inches in loose thickness when hand-guided equipment (e.g. jumping jack, plate compactor) is used
Compaction Requirements ^{1,2}	Minimum of 95% of the material's standard Proctor maximum dry density (ASTM D698) for clay soils and a minimum of 98% of the material's standard Proctor maximum dry density for sand and gravel soils.
Moisture Content of Cohesive Soils (Clay Soils) 3	+1 to +4% of the optimum moisture content
Moisture Content of Cohesionless Soils (Sand and Gravel Soils)	-2 to +2% of the optimum moisture content

- We recommend that engineered fill be tested for water content and compaction during placement. Should
 the results of the in-place density tests indicate the specified water or compaction limits have not been
 met, the area represented by the test should be reworked and retested as required until the specified
 water and compaction requirements are achieved.
- 2. Water levels should be maintained low enough to allow for satisfactory compaction to be achieved without the compacted fill material pumping when proofrolled.
- Moisture conditioned clay soils should not be allowed to dry out. A loss of moisture within these materials could result in an increase in the materials expansive potential. Subsequent wetting of these materials could result in undesirable movement.

Excavation and Trench Construction

Excavations into the subsurface soils and bedrock will encounter a variety of conditions. The individual contractor(s) is responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. All excavations should be sloped or shored in the interest of safety following local and federal regulations, including current Occupational Safety and Health Administration (OSHA) excavation and trench safety standards.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Soils and bedrock penetrated by the proposed excavations may vary significantly across the site. The soil and bedrock classifications are based solely on the materials encountered in the exploratory borings. The contractor should verify that similar conditions exist throughout the proposed area of excavation. If different subsurface conditions are encountered at the time of construction, the actual conditions should be evaluated to determine any excavation modifications necessary to maintain safe conditions.

Utility Trenches

Based on the subsurface conditions encountered in the borings and test pits at the site, it is our opinion the utilities can be installed using conventional open-cut trenches or using plow trenching techniques. Depending on the depth of the trenches, plow trenching techniques may be difficult.

Conventional Open-Cut Trenches

Utility trenches are a common source of water infiltration and migration. Utility trenches penetrating beneath equipment pad foundations should be sealed to restrict water intrusion and flow through the trenches below the equipment pad foundations. The trench should include a plug that extends at least 5 feet from the face of equipment pad foundations. The plug material should consist of cementitious flowable fill or low permeability clay. The trench plug material should be placed to surround the utility line. If used, the clay trench plug material should be placed and compacted to comply with the water content and compaction recommendations for moisture-conditioned soils as previously described in this report.

Plow Trenches

Based on the subsurface conditions encountered in the exploratory borings and test pits, it is our opinion cable plowing is a feasible installation method at this site. In addition, we do believe that pre-ripping the proposed cable alignments may be necessary at this site. Plow trenches generally get filled in as the cable or conduit is being installed. In addition, the trenches may get filled in as equipment traverses the plow trench alignment. Soils with a higher percentage of sands and gravels will fill in better than soils with higher percentage of clay size particles. Because the shallow soils at this site are clayey in nature, we recommend the surface of the plow trench be scarified and compacted. In areas where plow trenching is performed, it is possible that depressions may occur over time and may need to be monitored and maintained as necessary.

Grading and Drainage

All grades must be adjusted to provide positive drainage away from the structures during construction and maintained throughout the life of the proposed project. Infiltration of water into utility or foundation excavations must be prevented during construction. Landscaped irrigation adjacent to the foundation systems should be minimized or eliminated. Water permitted to pond near or adjacent to the perimeter of the structures (either during or post-construction) can result in significantly higher soil movements than those discussed in this report. As a result, any

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

estimations of potential movement described in this report cannot be relied upon if positive drainage is not obtained and maintained, and water is allowed to infiltrate the fill and/or subgrade.

Exposed ground should be sloped at a minimum of 10 percent grade for at least 5 feet beyond the perimeter of the structures. Backfill against the structures, if necessary, should be compacted in accordance with recommendations in this report and free of all construction debris to reduce the possibility of water infiltration. After construction and prior to project completion, we recommend that verification of final grading be performed to document that positive drainage, as described above, has been achieved.

Slopes

For permanent slopes in unreinforced compacted fill areas, recommended maximum configurations are as follows:

Item	Maximum Slope (Horizontal : Vertical)			
Granular and cohesive soils	3H:1V			

Recommendations are for maximum 10-foot high slopes. If steeper or higher slopes are required for site development, stability analyses should be completed to design the grading plan. The face of all slopes should be compacted to the minimum specification for fill embankments. Fill slopes should be overbuilt and trimmed to compacted material.

Earthwork Construction Considerations

Upon completion of grading operations, care should be taken to maintain the moisture content of the subgrade prior to construction of slabs-on-grade, aggregate-surfaced roads, etc. Construction traffic over prepared subgrade should be minimized and avoided to the extent practical. Construction traffic over processed clay subgrade will eventually reduce the moisture content and increase the density of the subgrade. Subsequent wetting of these materials will result in undesirable movement.

The site should also be graded to prevent ponding of surface water on prepared subgrade or in excavations. In areas where water is allowed to pond over a period of time, the affected area should be removed and allowed to dry out; however, allowing the clay soils to dry out below the optimum moisture content is not recommended. If constraints do not allow for moisture conditioning of affected clays as recommended in this report, the affected area should be overexcavated and replaced with engineered fill. As an alternative, geotextiles could also be considered as a stabilization technique.

The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during overexcavation operations, excavations, subgrade preparation; proof-rolling; placement and compaction of

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

controlled compacted fills; backfilling of excavations into the completed subgrade, and just prior to construction of building floor slabs.

FOUNDATIONS

In addition to the solar arrays, associated electrical equipment will be installed as part of the development of the site. The electrical equipment will most likely be supported on shallow spread footing or mat foundations.

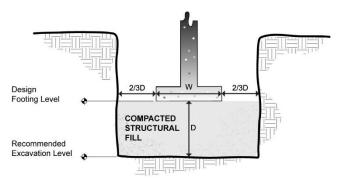
Spread Footing Foundation Design Recommendations

Design recommendations for spread footing foundation systems are presented in the following paragraphs.

Description	Value		
Overexcavation/Modification Depth	None		
Support Stratum	Native soils or engineered fill		
Maximum Gross Allowable Bearing Pressure 1	2,000 psf		
	Lean to fat clay:		
Lateral Earth Pressure Coefficients ²	Active, $K_a = 0.47$		
	Passive, $K_p = 2.1$		
	At-rest, $K_o = 0.64$		
Coefficient of Clidina 2	Lean to fat clay:		
Coefficient of Sliding ²	$\mu = 0.3$		
Moiet Sail Unit Waight	Lean to fat clay:		
Moist Soil Unit Weight	γ = 120 pcf		
Minimum Embedment Below Finished	36 inches		
Grade for Frost Protection ³			
Estimated Total Movement	About 1 inch		
Estimated Differential Movement ⁴	About ½ to ¾ of total movement		

- 1. The recommended maximum allowable bearing pressure assumes any unsuitable fill or soft soils, if encountered, will be over-excavated and replaced with properly compacted engineered fill. The design bearing pressure applies to a dead load plus design live load condition. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions.
- 2. The lateral earth pressure coefficients and sliding coefficients are ultimate values and do not include a factor of safety. The foundation designer should include the appropriate factors of safety.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223


Description Value

- 3. For perimeter footings, footings beneath unheated areas, and footings that will be exposed to freezing conditions during construction. Interior footings may bottom at a minimum depth of 12 inches below finished grade in heated areas.
- 4. Foundation settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the footings, the thickness of engineered fill, and the quality of the earthwork operations and footing construction.
- 5. Differential settlement is considered over a distance of about 40 feet.

Additional foundation movements could occur if water from any source infiltrates the foundation soils; therefore, proper drainage should be provided in the final design and during construction and throughout the life of the structure. Failure to maintain the proper drainage as recommended in the **Grading and Drainage** subsection of **Earthwork** will nullify the movement estimates provided above.

Unstable subgrade conditions should be observed by the geotechnical engineer to assess the subgrade and provide suitable alternatives for stabilization. Stabilized areas should be proofrolled prior to continuing construction to assess the stability of the subgrade.

Overexcavation of unsuitable soil (if encountered) below foundations should extend laterally beyond all edges of the footings at least 8 inches per foot of overexcavation depth below footing base elevation. The overexcavation should then be backfilled up to the footing base elevation in accordance with the procedures outlined in the **Earthwork** section of this report. The overexcavation and backfill procedure is described in the following figure.

Overexcavation / Backfill

NOTE: Excavations in sketches shown vertical for convenience. Excavations should be sloped as necessary for safety.

The base of all foundation excavations should be free of water and loose soil prior to concrete placement. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Should the soils at bearing level become excessively dry, disturbed or saturated, or frozen, the affected soil should be removed prior to placing concrete.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Reinforced Mat Foundation Design Recommendations

Proposed electrical equipment may be constructed on a minimum of 12 inches of non-frost susceptible soils. Additional design considerations are presented in the table below:

Description	Value		
Supporting Stratum	Minimum of 12 inches of non-frost susceptible soils placed in accordance with the Earthwork section of this report.		
Maximum Allowable Gross Bearing Pressure 1	2,000 psf		
	Lean to fat clay:		
	Active, $K_a = 0.47$		
	Passive, $K_p = 2.1$		
Lateral Earth Pressure Coefficients ²	At-rest, $K_0 = 0.64$		
	Granular soil:		
	Active, $K_a = 0.33$		
	Passive, $K_p = 3.0$		
	At-rest, $K_o = 0.50$		
Confficient of Clinica 2	Granular soil:		
Coefficient of Sliding ²	$\mu = 0.4$		
	Lean clay:		
Maiat Sail Unit Waight	γ = 120 pcf		
Moist Soil Unit Weight	Granular soil:		
	γ = 150 pcf		
Estimated Total Movement	About 1 inch		
Estimated Differential Movement	About ½ to ¾ of total movement		

- 1. The recommended maximum allowable gross bearing pressure assumes any unsuitable fill or soft soils, if encountered, will be over-excavated and replaced with properly compacted engineered fill. The design bearing pressure applies to a dead load plus design live load condition. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions.
- The lateral earth pressure coefficients and sliding coefficients are ultimate values and do not include a factor of safety. The foundation designer should include the appropriate factors of safety.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Driven Pile Design Preliminary Design Recommendations

The proposed solar photovoltaic panels may be supported on a driven pile foundation system. The design capacity of a single-driven pile is a function of several factors including:

- Size and type of pile.
- n Engineering properties of the subsurface soils.

For the purpose of this report we have assumed that piles will consist of light weight W-section (W6x9).

Due to the wide spacing of soil borings and pile load test sites, variations may occur across the site that may affect pile capacity

The ultimate axial capacity of the straight sided pile in compression can be determined by the following equation:

$$Q_u = Q_s + Q_p = fA_s + qA_p$$

where:

 Q_u = ultimate axial capacity in compression (lb)

 Q_s = ultimate skin-friction resistance (lb)

 Q_p = ultimate end bearing (lb)

f = ultimate unit load transfer in skin friction (lb/ft²)

 α = ultimate unit load transfer in end bearing (lb/ft²)

 A_s = side surface area of the pile (ft²)

 A_p = gross end area of the pile (ft²)

The end bearing component of the above equation is neglected when computing the ultimate axial capacity in tension (tension or uplift). The allowable axial capacities of the pile in compression and tension are determined by dividing each ultimate axial capacity by a factor-of-safety (FOS). The FOS used for allowable end bearing, (based on recommended FOS values equations used) was 3.0, and for allowable skin friction (both compression and tension) was 2.0.

The allowable unit skin friction and end bearing determined using the soil strengths based on our field and laboratory

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Axial Capacities: Deep Bedrock

Top - Bottom Depth	Unit Weight (pcf)	USCS Soil Type	Allowable Unit End Bearing (psf)	Allowable Unit Skin Friction (psf) (Compression)	Allowable Unit Skin Friction (psf) (Tension)
0 – 3	120	CL	1	<u>.</u> .1	<u></u> 1
3 –14	120	CL	6,000	173	138
14 – 20	135	 2	12,050	198	158

^{1.} Upper 3.0 feet should be neglected in axial analysis;

Axial Capacities: Shallow Bedrock

Top - Bottom Depth	Unit Weight (pcf)	USCS Soil Type	Allowable Unit End Bearing (psf)	Allowable Unit Skin Friction (psf) (Compression)	Allowable Unit Skin Friction (psf) (Tension)
0 – 3	120	CL	1	1	1
3 – 5	120	CL	6,000	173	138
5 – 20	135	2	12,050	198	158

^{1.} Upper 3.0 feet should be neglected in axial analysis;

Axial and uplift pile capacities may be increased by one-third when considering wind and/or earthquake loading. If the pile type varies from what we have assumed, Terracon should be notified so that pile capacities may be reviewed and changed if necessary.

Pile spacing is assumed to be greater than 3 times of the diameter of the pile used, therefore a reduction in axial and uplift capacity for pile groups is not required.

^{2.} Soil type is bedrock

^{2.} Soil type is bedrock

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Driven Pile Lateral Loading

For lateral load and overturning design, we have included beam on elastic foundation spring constants, lateral equivalent earth pressures, and more commonly used LPILE® parameters. For calculation of lateral deflection using the beam on elastic foundation method, a coefficient of subgrade reaction listed on the table may be used for the analysis. Lateral load design parameters are valid for maximum soil strain of 1 percent for the native soils acting over a distance of one pile diameter. The passive pressure, coefficient of horizontal subgrade reaction, and LPILE® parameters are ultimate values; therefore, appropriate factors of safety should be applied in the pier design.

Recommended soil parameters for lateral load analysis of driven pile foundations have been developed for use in LPILE[®] computer programs and are presented in the following table.

Lateral Parameters: Deep Bedrock

		Soil Properties					
Depth Interval (ft)	Soil	Unit Weight ¹ (pcf)	Internal Friction Angle (ø)	Cohesion ¹ (psf)	K ¹ (pci)	Static ¹ \$\varepsilon_{50}\$	
0 – 3	Stiff Clay w/o Free Water	120		2,000	350	0.005	
3 -14	Stiff Clay w/o Free Water	120		2,000	500	0.005	
14 – 20	Bedrock	135		4,000	2000	0.004	

^{1.} Based on laboratory testing and correlations within AllPile 7.10c.

Lateral Parameters: Shallow Bedrock

	Depth Interval Soil (ft)	Soil Properties				
Interval		Unit Weight ¹ (pcf)	Internal Friction Angle (ø)	Cohesion ¹ (psf)	K ¹ (pci)	Static ¹ \$\&\epsilon_{50}\$
0 – 3	Stiff Clay w/o Free Water	120		2,000	350	0.005

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

	Soil	Soil Properties				
Depth Interval (ft)		Unit Weight ¹ (pcf)	Internal Friction Angle (ø)	Cohesion ¹ (psf)	K ¹ (pci)	Static ¹ \$\mathcal{\epsilon}\epsilon_{50}\$
3 – 5	Stiff Clay w/o Free Water	120		2,000	500	0.005
5 – 20	Bedrock	135		4,000	2000	0.004

^{2.} Based on laboratory testing and correlations within AllPile 7.10c.

Pile spacing is assumed to be greater than 5 times of the diameter of the pile used, therefore a reduction in lateral capacity for pile groups is not required.

Terracon can complete a lateral load analysis for the selected pile type once pile loads have been provided.

Driven Pile Construction Considerations

Driving light W-pile sections into the occasional very dense/hard soils may be difficult and could result in driving refusal above estimated tip depth at some locations, and/or overstressing the pile. Pneumatic/vibratory hammering, predrilling or other driving techniques may be required. Terracon can complete a drivability analysis once the pile size and driving system (hammer and cushion) information is determined.

In order to limit delays during construction and to confirm that the correct pile size and driving system is selected, a drivability analysis should be completed, as well as driving a selection of test piles across the site prior to construction to verify the piles are able to be driven. If the piles are unable to be driven, our office shall be contacted to provide alternative recommendations such as predrilling, or using a different pile or driving system.

Care should be taken to contract with an experienced contractor that is able to match appropriate pile driving equipment with selected piles and soil conditions. The pile driving contractor should review our test boring logs and plan his work and equipment accordingly. Our office would also be available to consult with the pile driving contractor.

Drilled Shaft Design Recommendations

Reinforced concrete drilled shafts may be used to support the planned substation line structures. Consideration was given to 6-foot diameter drilled shafts for support of the planned structures. This report provides geotechnical recommendations regarding axial load capacity of drilled shaft

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

foundations. We understand that others will evaluate lateral capacity of drilled shafts and will incorporate the soil parameters provided in this report into their design.

Drilled Shaft Axial and Lateral Capacity Parameters

Drilled pier axial capacity parameters for tip and skin were estimated based on correlations with field penetration blow counts and correlations between encountered onsite soil. The following tables summarize soil parameters for use in axial capacity analysis for drilled shafts at this site. Allowable unit capacity parameters include a Factor of Safety of 2.5. The depth intervals presented are based on material behavior and measured or estimated soil parameters and may vary from the generalized soil profiles presented in the GeoModel (which is based on soil stratigraphy).

Axial Capacities: Deep Bedrock

Top - Bottom Depth	Unit Weight (pcf)	USCS Soil Type	Allowable Unit End Bearing (psf)	Allowable Unit Skin Friction (psf) (Compression)	Allowable Unit Skin Friction (psf) (Tension)
0 – 3	120	CL	1	<u></u> 1	<u>.</u> .1
3 –14	120	CL	5,800	430	430
14 – 20	135	2	13,600	1,270	1,270

- 1. Upper 3.0 feet should be neglected in axial analysis;
- 2. Soil type is bedrock

Axial Capacities: Shallow Bedrock

Top - Bottom Depth	Unit Weight (pcf)	USCS Soil Type	Allowable Unit End Bearing (psf)	Allowable Unit Skin Friction (psf) (Compression)	Allowable Unit Skin Friction (psf) (Tension)
0 – 3	120	CL	1	1	1
3 – 5	120	CL	5,800	430	430
5 – 20	135	2	13,600	1,270	1,2700

- 1. Upper 3.0 feet should be neglected in axial analysis;
- 2. Soil type is bedrock

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Drilled Shaft Lateral Considerations

Refer to **Driven Pile Lateral Loading** for lateral parameters.

Drilled Shaft Construction Considerations

To prevent sloughing of surface soils into drilled shaft excavations we recommend temporary casing should be used. Following completion of the excavation and prior to installing reinforcement or concrete the bottom of the pier must be observed or tested to verify that all loose material has been removed. Dense to very dense soil conditions and the presence of cobbles and cemented zones was encountered at the site. Specialty excavation equipment may be required to advance excavations. The contractor should review the conditions encountered and reported on the boring logs and in this report and provide appropriate equipment to excavate the shafts to the design depths at this site.

Temporary casing should remain in place until reinforcing steel and concrete has been placed. The casing should be pulled as the concrete is placed to provide final contact between the soil and the concrete.

Concrete may be allowed to free fall provided 1) there is no water in the excavation and 2) the concrete stream is controlled to not impact the steel reinforcement or sides of the excavation. An uninterrupted supply and placement of concrete should be performed to produce a monolithic pier.

The drilled shaft installation process should be performed under the direction of the Geotechnical Engineer. The Geotechnical Engineer should document the shaft installation process including soil/rock and groundwater conditions encountered, consistency with expected conditions, and details of the installed shaft.

SEISMIC CONSIDERATIONS

Based on our subsurface exploration and laboratory testing, it is our opinion that the soils have a low risk of liquefaction. The following table presents the seismic site classification based on the 2015 International Building Code (IBC) and the subsurface conditions encountered within the borings:

Code Used	Site Classification	
2015 International Building Code (IBC) 1,2	D, C	

- 1. In general accordance with the 2015 International Building Code, Section 1613.3.2.
- The 2015 International Building Code (IBC) requires a site subsurface profile determination extending a
 depth of 100 feet for seismic site classification. The current scope requested does not include the required
 100-foot subsurface profile determination. The deepest borings of this exploration extended to a maximum

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

depth of about 20 feet and this seismic site class definition considers that similar subsurface conditions exist below the maximum depth of the subsurface exploration.

ACCESS ROADWAYS

We understand that access road cross sections used for construction of the project will be the responsibility of the EPC contractor, and that only post-construction traffic with an allowable rut depth of up to 2 inches is what we are to design for in this report. We assume low-volume, aggregate-surfaced and native soil access roads experience primarily light pickup truck traffic travelling over the access roads only once per week. The aggregate-surfaced roads will be designed to accommodate a fire truck (about 85,000 lbs). The following sections present our design recommendations for aggregate-surfaced roads and compacted native soil access roads at the project site.

Aggregate-Surfaced Roadway Design Recommendations

The pavement sections presented below for the aggregate surface access roads were determined in general accordance with the "Aggregate-Surfaced Road Design Catalog" subsection of the 1993 AASHTO "Guide for the Design of Pavement Structures" and based on subsurface conditions encountered and laboratory test results. Five CBR tests have been completed and are summarized below.

Sample	USCS Classification	CBR Test Result, %
TP-2 @ 0-4 ft.	Lean Clay with Sand	4.2
TP-8 @ 0-4 ft.	Lean Clay	3.2
TB-10 @ 0-4 ft.	Lean Clay with Sand	3.6
TB-18 @ 0-4 ft.	Lean Clay with Sand	4.0
TB-22 @ 0-4 ft.	Sandy Lean Clay	8.3

We have assumed an allowable 18-kip equivalent single-axle load (ESALs) of 2,000. Based on Figure 4.3, Design Chart for Aggregate-Surfaced Roads Considering Allowable Rutting, 1993 Guide for Design of Pavement Structures by AASHTO, an estimated resilient modulus (M_R) of 5,000 psi and an elastic modulus of the aggregate base course of 30,000 psi, the following minimum aggregate base course thicknesses could be implemented:

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Allowable Rut Depth	Aggregate Base Course Thickness (inches)
2 inches	5 inches
1-1/2 inches	6 inches
1 inch	9 inches

Prior to aggregate placement, we recommend the native subgrade soils be scarified, moisture conditioned and compacted to a minimum depth of 6 inches, prior to placing the aggregate base.

We recommend the use of aggregate base course meeting Colorado Department of Transportation (CDOT) Class 5 or Class 6 specifications. Ongoing maintenance will also be required should the access roads be constructed prior to the finished construction of the solar array.

The aggregate surface materials and native subgrade soils beneath roadways should be compacted in accordance with the recommendations in the **Earthwork** section of this report. The surface course should be compacted at a moisture content not more than 2 percent above the optimum moisture content as determined by the standard Proctor (ASTM D698).

If subgrade soils become unstable, we recommend removing the soft or yielding soils and replace the material with approved on-site soils or imported fill. As an alternative, consideration can be given to placing geotextile and additional base course on top of the unstable area. We estimate 12 to 24 inches of base course may be required to stabilize the roadway in isolated areas or low areas that are susceptible to holding water.

Compacted Native Soil Access Road Design Recommendations

Based upon the soil conditions encountered in the exploratory borings, the use of on-site soils for construction of onsite roads is considered acceptable. Without the use of asphalt concrete or other hardened material to surface the roadways, there is an increased potential for erosion of the roadway to occur.

If the compacted native soil access roads (un-surfaced roads) are anticipated to be used routinely during wet seasons or when the upper soils are in saturated conditions, the un-surfaced roads will experience wheel path rutting and depression, and may require increased maintenance.

Construction of the un-surfaced roadways should consist of a minimum of 12 inches of compacted on-site soils. In the event the proposed roadways are higher in elevation than the existing grades, the upper 12 inches of subgrade soils at existing grade should be scarified, moisture conditioned, and compacted to grade in accordance with the recommendations in the **Earthwork** section of this report.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Positive drainage should be provided during construction and maintained throughout the life of the roadways. Proposed un-surfaced roadways design should be graded to eliminate ponding. The un-surfaced roads are expected to function satisfactorily with periodic maintenance.

Pavement and Roadway Design and Construction Considerations

On most project sites, the site grading is accomplished relatively early in the construction phase. Fills are typically placed and compacted in a uniform manner. However, as construction proceeds, the subgrade may be disturbed due to utility excavations, construction traffic, desiccation, or rainfall/snow melt. As a result, the roadway subgrade may not be suitable for construction and corrective action will be required. The subgrade should be carefully evaluated at the time of construction for signs of disturbance or instability. We recommend the subgrade be thoroughly proofrolled with a loaded tandem-axle dump truck prior to final grading. Access roadway areas should be moisture conditioned and properly compacted in accordance with the recommendations in the Earthwork section of this report immediately prior to placement of the surfacing materials.

We emphasize that aggregated-surfaced or compacted native soil roadways, regardless of the section thickness or subgrade preparation measures, will require on-going maintenance and repairs to keep them in a serviceable condition. It is not practical to design a gravel section of sufficient thickness that on-going maintenance will not be required. This is due to the porous nature of the gravel that will allow precipitation and surface water to infiltrate and soften the subgrade soils, and the limited near surface strength of unconfined gravel that makes it susceptible to rutting.

We recommend an implementation of a site inspection program at a frequency of at least once per year to verify the adequacy of the roadways. Preventative measures should be applied as needed for erosion control and regrading. An initial site inspection should be completed approximately three months following construction.

When potholes, ruts, depressions, or yielding subgrades develop, they must be addressed as soon as possible in order to avoid major repairs. The roadways should be carefully reevaluated at the time of the use by heavy equipment or critical component delivery for signs of disturbance or excessive rutting. Roadway reevaluation should include proofrolling immediately prior to use by heavy or critical equipment, particularly after a rainfall event. If disturbance and/or excessive wetting have occurred, roadway areas should be reworked, moisture conditioned (if necessary), and properly compacted as indicated in this report.

Loss of surfacing materials from dust can be significant and may result in a roadway surface course that is several inches thinner within a few years. The reduced thickness will result in loss of strength and poor drainage. The use of a dust palliative such as magnesium chloride can reduce the rate of deterioration of the roadway surface and associated dust, especially when used with an aggregate surfacing material containing 8 to 12 percent fines. The typical application rate is about 0.3 gallons per square yard, although the rate may need to be increased to 0.5 to

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

0.6 gallons per square yard to accommodate the heavy traffic associated with the site. The treatment should be applied when the surfacing material is in a damp condition.

Positive surface drainage of the roadway and subgrade should be provided and maintained during the life of the project. The clay subgrade of the roadway should be crowned and sloped at 2 percent to provide surface water drainage at all times. Water should not be allowed to remain within the roadway section and subgrade soils. In addition, the subgrade soils should be prepared in accordance with the **Earthwork** section of this report. The following recommendations should be considered at minimum:

- n Shoulders adjacent to pavements should slope at 5 to 10 percent away from the roadways
- n The subgrade surfaces have a minimum ¼ inch per foot (2 percent) slope to promote proper surface drainage
- Consider appropriate edge drainage and ditches/culverts
- n The roadway clay subgrade should be slightly above surrounding grades to promote positive drainage. Aggregate base course should not be placed in a "trough" condition within the roadway section that is prone to holding water.

Preventative maintenance should be planned and provided for through an on-going pavement management program to enhance future pavement performance. Preventative maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment.

Base course or surfacing materials should not be placed when the surface is wet. Surface drainage should be provided away from the edge of roadways to reduce lateral moisture transmission into the subgrade.

GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials, or conditions. If the owner is concerned about the potential for such contamination or pollution, other services should be undertaken.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

FIGURES

Contents:

GeoModel (9 Pages)

GEOMODEL

ELEVATION (MSL) (feet)

JSI - Dolores Canyon Solar Project ■ Cahone, CO Terracon Project No. 61195223

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

Sandy Lean Clay

Lean Clay

Sandy Silt

Fat Clay with Sand

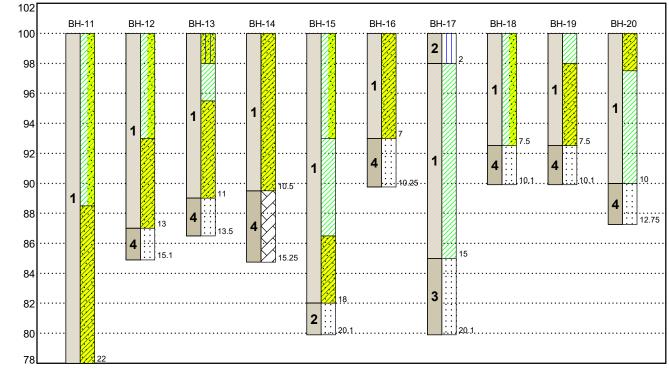
Lean Clay with Sand

Sandstone

Clayey Sand

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.


for this project.

Numbers adjacent to soil column indicate depth below ground surface.

ELEVATION (MSL) (feet)

JSI - Dolores Canyon Solar Project ■ Cahone, CO Terracon Project No. 61195223

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

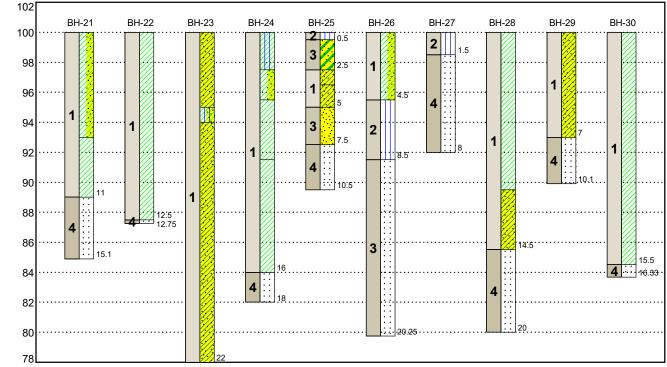
Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

	Lean	Clay	with	Sand
--	------	------	------	------

Sandy Silty Clay

Claystone


NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

ELEVATION (MSL) (feet)

JSI - Dolores Canyon Solar Project ■ Cahone, CO Terracon Project No. 61195223

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

Lean Clay with Sand

Sandy Lean Clay

III SIII

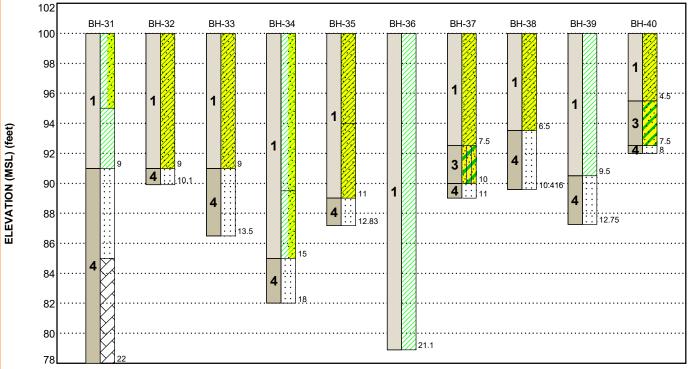
Lean Clay

Silty Clay with Sand

Clayey Sand

Sandstone

Silty Clay


Poorly-graded Sand

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

JSI - Dolores Canyon Solar Project ■ Cahone, CO Terracon Project No. 61195223

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

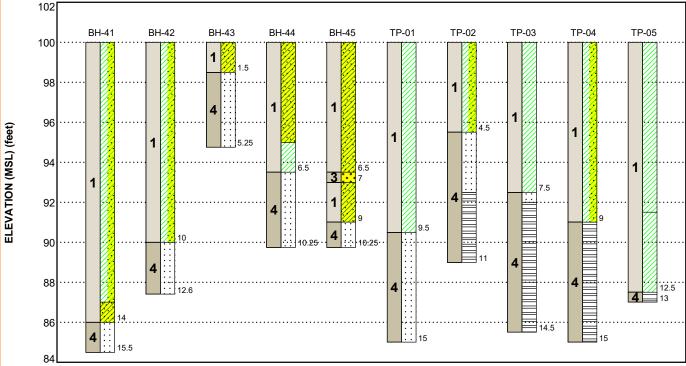
Lean Clay with Sand

Claystone

Clayey Sand

Lean Clay

Sandy Lean Clay


Sandstone

Silty Clayey Sand

NOTES:

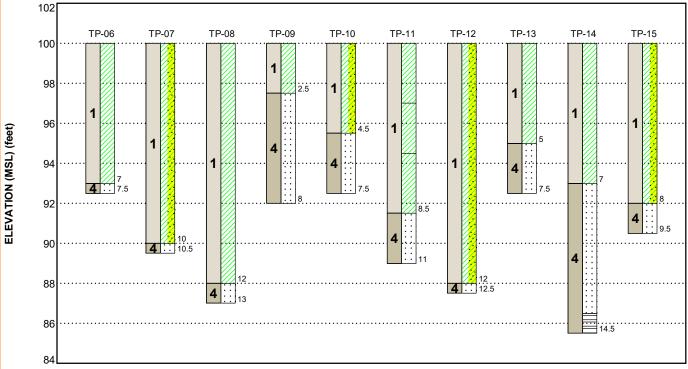
Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

Lean Cla	ay with Sand
----------	--------------

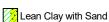


NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

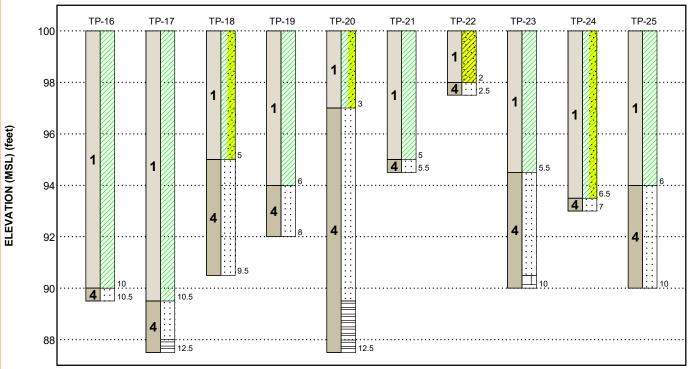
JSI - Dolores Canyon Solar Project ■ Cahone, CO Terracon Project No. 61195223

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.


Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

Lean Clay	,
-----------	---



NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

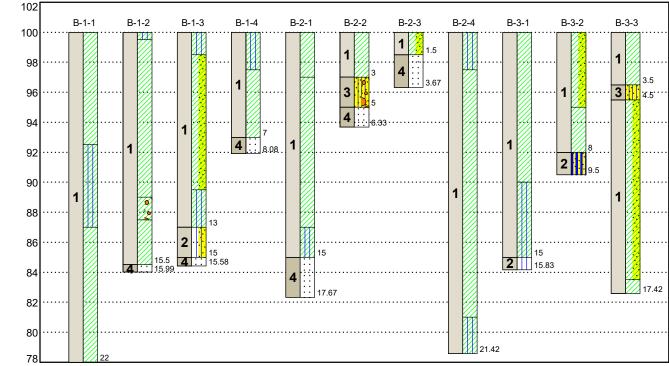
JSI - Dolores Canyon Solar Project ■ Cahone, CO Terracon Project No. 61195223

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

Lean Clay	Lean Clay with Sand
Sandstone	💋 Sandy Lean Clay
Shale	Limestone


NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

ELEVATION (MSL) (feet)

JSI - Dolores Canyon Solar Project ☐ Cahone, CO Terracon Project No. 61195223

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

Lean Clay

Sandstone

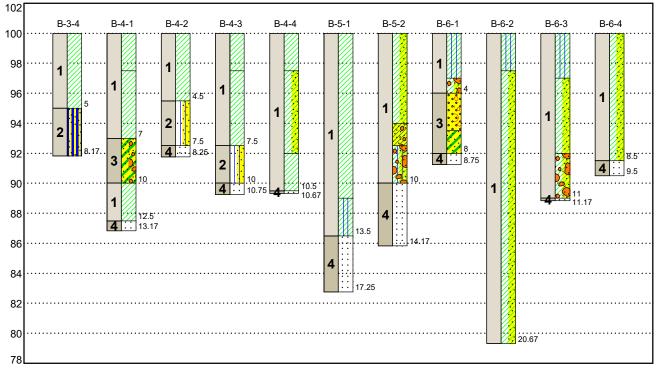
Silty Sand with Gravel

Lean Clay with Sand

Silt

Lean Clay with Gravel

Sandy Silt


NOTES:

Silty Sand

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

ELEVATION (MSL) (feet)

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

Lean Clay

Sandstone

Sandy Silt

Silt with Sand

Clayey Sand with Gravel

Lean Clay with Sand

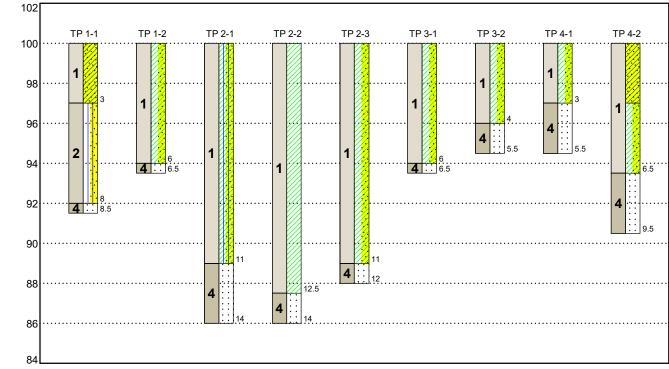
Silty Clay

Sandy Lean Clay with Gravel

Gravelly Silty Clay with Sand

Gravelly Lean Caly with Sand

Well-graded Sand with Gravel


Clayey Sand

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering

ELEVATION (MSL) (feet)

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Lean to Fat Clay	Lean to fat clays with varying amounts of sand
2	Silt	Silts with varying amounts of sand
3	Sands	Sands with varying amounts of silt and clay
4	Weathered Bedrock	Weathered sandstone, claystone, shale, limestone or slate.

LEGEND

Sandy Lean Clay

Lean Clay with Sand

Silt with Sand

Silty Clay with Sand

Sandstone

Lean Clay

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

ATTACHMENTS

Revised Geotechnical Engineering Report

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

EXPLORATION AND TESTING PROCEDURES

Field Exploration

Boring Layout: The locations of the borings are presented in Appendix A – **Site Location and Exploration Plans**. The borings were located in the field by overlaying the site plan on Google Earth, recording the latitude and longitude coordinates, and staking the borings using a handheld, recreational-grade GPS unit. The accuracy of the latitude and longitude values is typically about +/- 25 feet when obtaining the values using this method. The accuracy of the boring locations should only be assumed to the level implied by the methods used.

Subsurface Exploration Procedures - Borings: The borings were drilled with CME-75 truck-mounted rotary drill rig with hollow-stem augers. During the drilling operations, lithologic logs of the borings were recorded by the field engineer. Disturbed samples were obtained at selected intervals utilizing a 2-inch outside diameter standard split spoon sampler and relatively undisturbed samples were obtained a 3-inch outside diameter modified California barrel sampler. Bulk samples were obtained from auger cuttings. Penetration resistance values were recorded in a manner similar to the standard penetration test (SPT). This test consists of driving the sampler into the ground with a 140-pound hammer free falling through a distance of 30 inches. The number of blows required to advance the barrel sampler 12 inches (18 inches for standard split-spoon samplers, final 12 inches are recorded) or the interval indicated is recorded and can be correlated to the standard penetration resistance value (N-value). The blow count values are indicated on the boring logs at the respective sample depths, barrel sampler blow counts are not considered N-values.

An automatic hammer was used to advance the samplers in the borings performed on this site. A greater efficiency is typically achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. Published correlations between the SPT values and soil properties are based on the lower efficiency cathead and rope method. This higher efficiency affects the standard penetration resistance blow count value by increasing the penetration per hammer blow over what would be obtained using the cathead and rope method. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

The standard penetration test provides a reasonable indication of the in-place density of sandy type materials, but only provides an indication of the relative stiffness of cohesive materials since the blow count in these soils may be affected by the moisture content of the soil. In addition, considerable care should be exercised in interpreting the N-values in gravelly soils, particularly where the size of the gravel particle exceeds the inside diameter of the sampler.

Groundwater measurements were obtained in the borings at the time of drilling. Due to safety concerns, the borings were backfilled with auger cuttings after drilling. Some settlement of the backfill may occur and should be repaired as soon as possible.

Revised Geotechnical Engineering Report

Dolores Canyon Solar Project ■ Near Cahone, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Subsurface Exploration Procedures – Test Pits: The test pits were excavated using a Caterpillar CAT 420F loader backhoe. During the excavation operations, lithologic logs of the test pits were recorded by the field engineer. Bulk samples were collected from the excavated materials.

Due to safety concerns, the test pits were backfilled with excavated materials upon completion. The backfill materials were compacted with the bottom of the excavator bucket in lifts; however, compaction testing of the backfill was not performed. Some settlement of the backfill may occur and should be monitored and repaired as soon as possible.

Field Electrical Resistivity Testing: Field electrical resistivity test were performed at 13 location at the site using a Mini-Res ground resistance meter and the Wenner four-point test method. The tests were conducted along a pair of approximately perpendicular arrays at each location using electrode spacings (A-spacing) of 2, 4, 8, 15, 25, 50, 100, 250, and 500 feet. The resistivity survey test location is shown in Appendix A – **Site Location and Exploration Plans**. The field resistivity test results are presented in Appendix B – **Exploration Results**.

Laboratory Testing

Samples retrieved during the field exploration were returned to the laboratory for observation by the project geotechnical engineer and were classified in general accordance with the Unified Soil Classification System presented in Appendix B – Exploration Results.

At this time, an applicable laboratory-testing program was formulated to determine engineering properties of the subsurface materials. Following the completion of the laboratory testing, the field descriptions were confirmed or modified as necessary, and the boring logs were prepared. The boring logs are included in Appendix B – Exploration Results.

Laboratory test results are included in Appendix C – Laboratory Test Results. These results were used for the geotechnical engineering analyses and the development of foundation, earthwork, and access road recommendations. All laboratory tests were performed in general accordance with the applicable local or other accepted standards.

Selected soil and bedrock samples were tested for the following engineering properties:

- Water content
- Dry density
- Grain size distribution
- Atterberg limits
- Moisture-density relationship
- Thermal resistivity
- Swell/consolidation

- Water-soluble sulfate
- Water-soluble chlorides
- Sulfides
- pH
- Electrical conductivity
- Electrical resistivity
- Oxidation-reduction potential

APPENDIX A - SITE LOCATION AND EXPLORATION PLANS

Contents:

Exhibit A-1: Site Location Plan

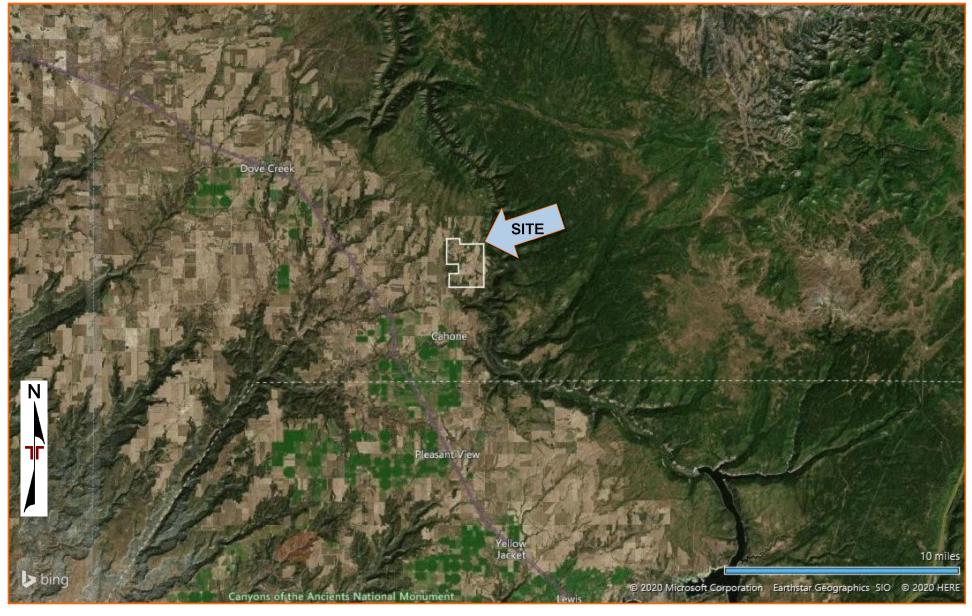
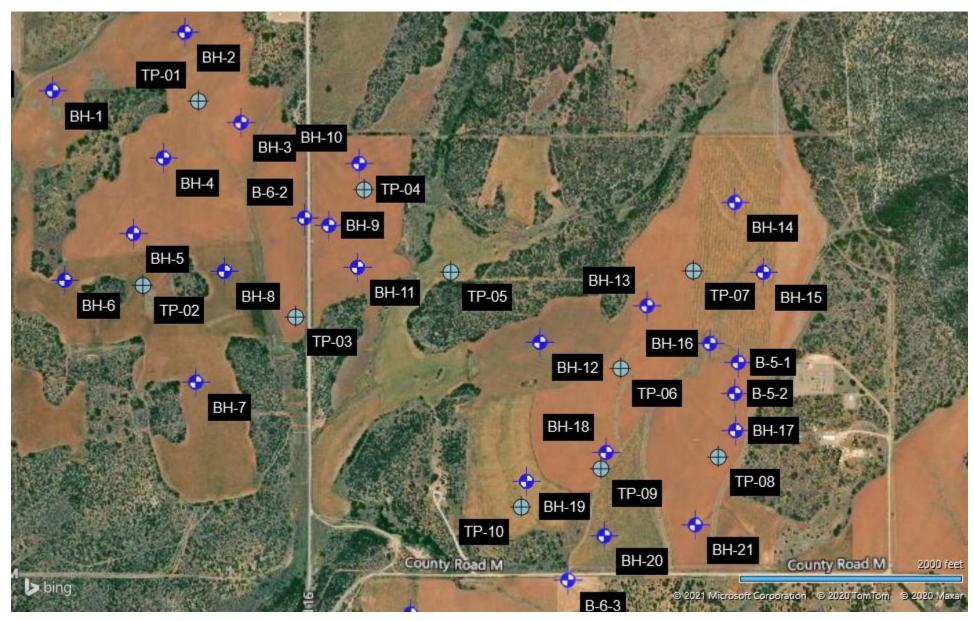
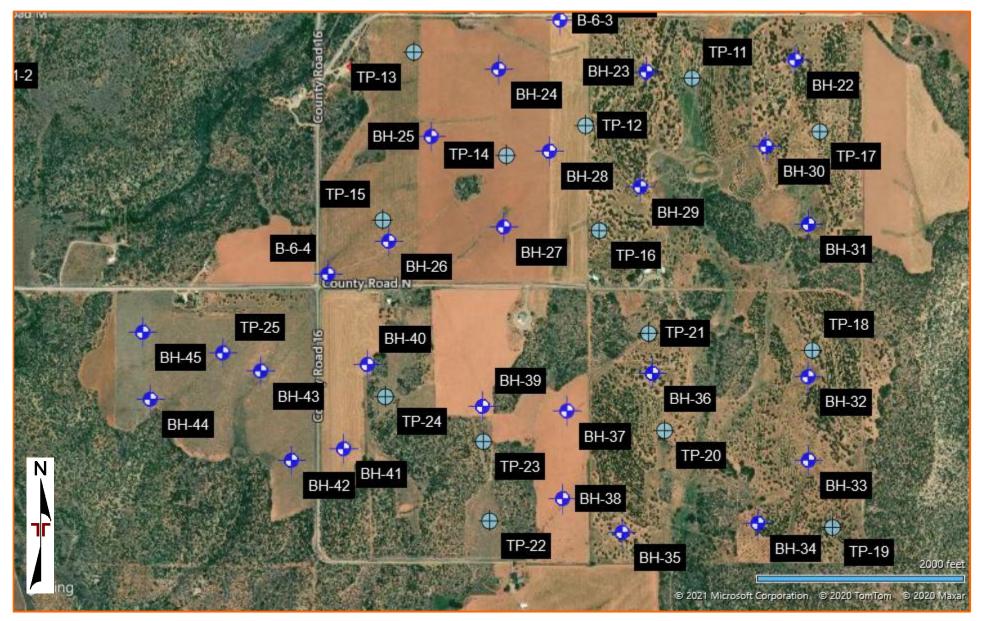
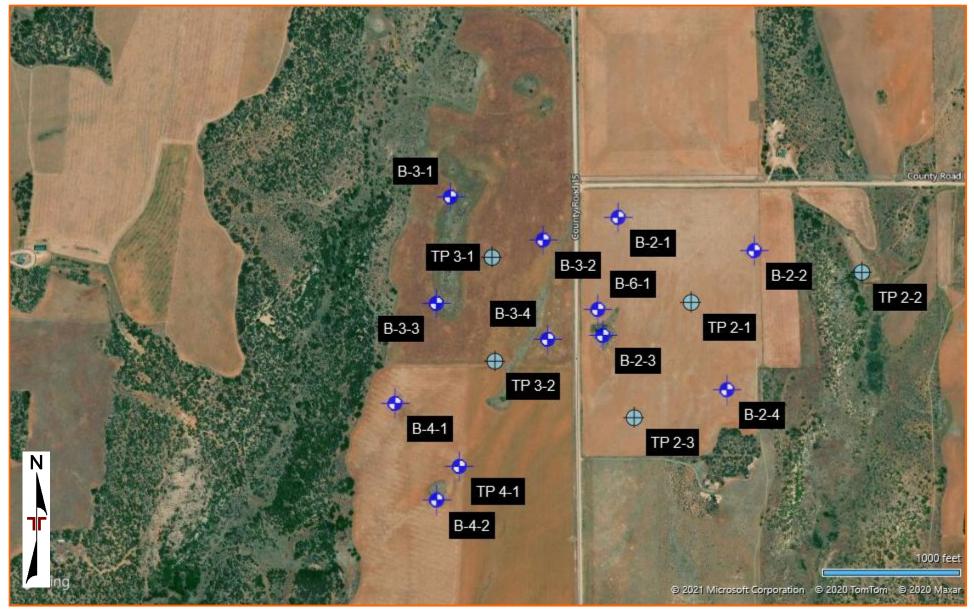

Exhibit A-2: Boring and Test Pit Location Plan with Aerial Image

Exhibit A-3: Field Electrical Resistivity Location Plan with Aerial Image


Note: All attachments are one page unless noted above.

SITE LOCATION





APPENDIX B – EXPLORATION RESULTS

Contents:

Exhibit B-1: General Notes

Exhibit B-2: Unified Soil Classification System

Exhibits B-3 through B-69: Boring Logs (Boring Nos. 1 through 45 and 1-1 to 4-4)

Exhibits B-70 through B-103: Test Pit Logs (Test Pit Nos. TP-1 through TP-8 and 1-1

through 4-2)

Exhibits B-104 through B-120: Field Electrical Resistivity Test Data (R-1 through R-13

and FER-01 through FER-03)

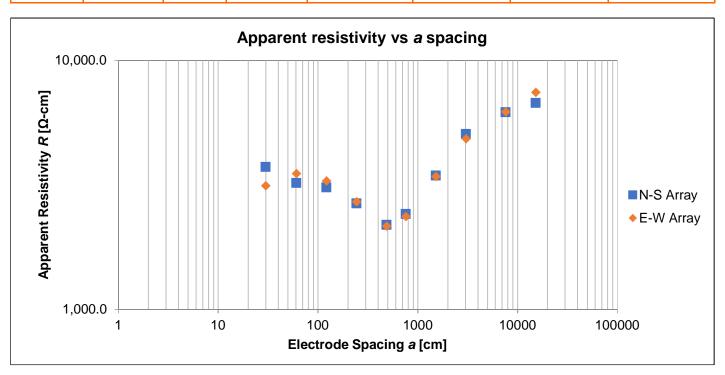
Note: All attachments are one page unless noted above.

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 61195223 JSI - DOLORES CAN GPJ TERRACON DATATEMPLATE. GDT 6/20/20

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 61195223.31SI - DOLORES CAN.GPJ TERRACON DATATEMPLATE.GDT 6/20/20

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 61195223 JSI - DOLORES CAN GPJ TERRACON DATATEMPLATE. GDT 6/20/20

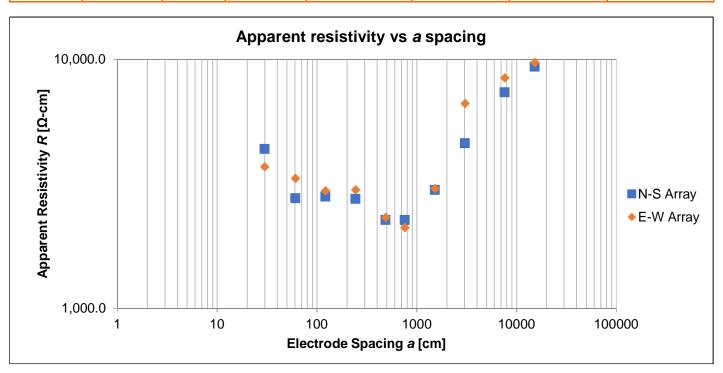
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 61195223.3 ISI - DOLORES CAN GPJ TERRACON DATATEMPLATE. GDT 6/20/20


Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 61195223

Array Loc.	Resistivity Array R-1									
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm							
Serial #	LRI SN276	Ground Cond.	Tilled Field							
Cal. Check	May 18, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment							
Test Date	May 18, 2020	Method V	Tenner 4-pin (ASTM G57-06 (2012); IEEE 81-2012							
Notes &		_								
Conflicts										

Apparent resistivity
$$\rho$$
 is calculated as : $\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$

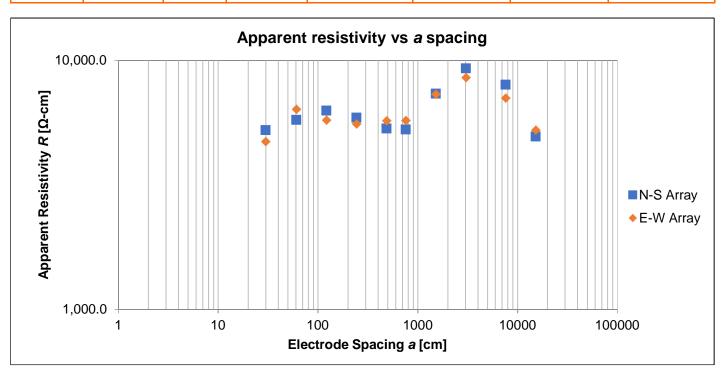
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S	N-S Test		Test
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>ρ</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	15.09	3740	12.66	3140
2	61	6	15	7.66	3220	8.34	3510
4	122	6	15	3.93	3090	4.17	3280
8	244	6	15	1.73	2670	1.76	2710
16	488	12	30	0.71	2190	0.70	2160
25	762	12	30	0.50	2420	0.49	2360
50	1524	12	30	0.36	3450	0.36	3420
100	3048	12	30	0.27	5080	0.25	4850
250	7620	12	30	0.13	6210	0.13	6230
500	15240	12	30	0.07	6760	0.08	7450



Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.	Resistivity Array R-2									
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm							
Serial #	LRI SN276	Ground Cond.	Tilled Field							
Cal. Check	May 18, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment							
Test Date	May 18, 2020	Method ⁷	/enner 4-pin (ASTM G57-06 (2012); IEEE 81-2012							
Notes &										
Conflicts										

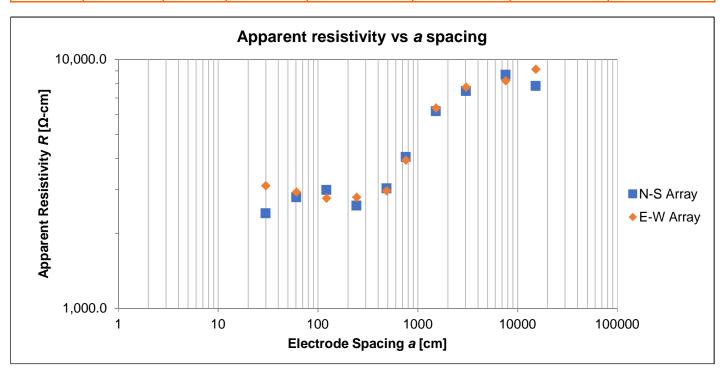
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S Test		E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	17.64	4380	14.98	3710
2	61	6	15	6.58	2770	7.91	3330
4	122	6	15	3.57	2810	3.78	2970
8	244	6	15	1.79	2760	1.94	2990
16	488	12	30	0.74	2270	0.75	2320
25	762	12	30	0.47	2270	0.44	2110
50	1524	12	30	0.31	2990	0.32	3030
100	3048	12	30	0.24	4620	0.35	6670
250	7620	12	30	0.15	7390	0.18	8440
500	15240	12	30	0.10	9360	0.10	9740


Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.	Resistivity Array R-3								
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm						
Serial #	LRI SN276	Ground Cond.	Varing terrain: illed field and range land						
Cal. Check	May 18, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment						
Test Date	May 18, 2020	Method \	enner 4-pin (ASTM G57-06 (2012); IEEE 81-2012						
Notes &		_	_						
Conflicts									

Apparent resistivity
$$\rho$$
 is calculated as : $\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$

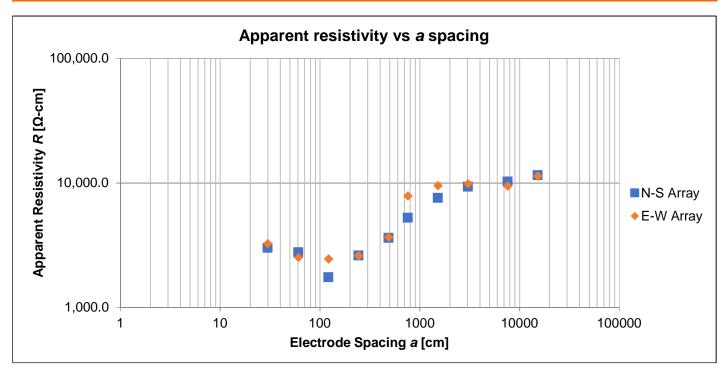
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S	N-S Test		Test Test
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>ρ</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	21.20	5260	19.03	4720
2	61	6	15	13.73	5770	15.17	6380
4	122	6	15	8.01	6300	7.32	5760
8	244	6	15	3.83	5900	3.60	5560
16	488	12	30	1.73	5330	1.85	5720
25	762	12	30	1.10	5290	1.20	5750
50	1524	12	30	0.77	7360	0.76	7330
100	3048	12	30	0.49	9320	0.45	8530
250	7620	12	30	0.17	8010	0.15	7060
500	15240	12	30	0.05	4960	0.05	5250



Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.	Resistivity Array R-4									
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm							
Serial #	LRI SN276	Ground Cond.	Tilled Field							
Cal. Check	May 19, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment							
Test Date	May 19, 2020	Method ⁷	Venner 4-pin (ASTM G57-06 (2012); IEEE 81-2012							
Notes &		_								
Conflicts										

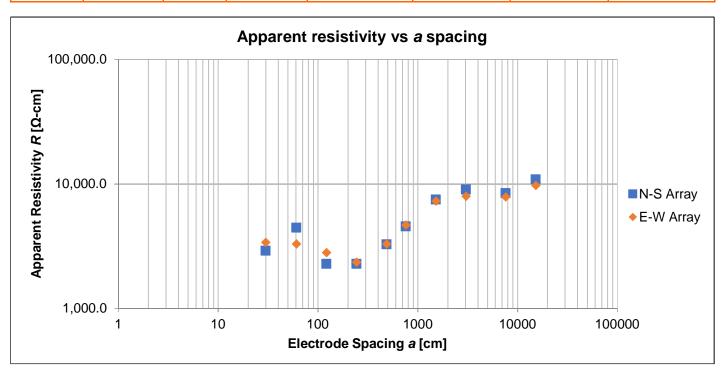
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S Test		E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>ρ</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	9.73	2410	12.52	3110
2	61	6	15	6.67	2800	6.97	2930
4	122	6	15	3.80	2990	3.52	2770
8	244	6	15	1.68	2590	1.81	2800
16	488	12	30	0.99	3040	0.96	2970
25	762	12	30	0.85	4060	0.82	3940
50	1524	12	30	0.65	6200	0.67	6390
100	3048	12	30	0.39	7480	0.40	7750
250	7620	12	30	0.18	8700	0.17	8220
500	15240	12	30	0.08	7840	0.10	9150



Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.	Resistivity Array R-5									
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm							
Serial #	LRI SN276	Ground Cond.	Tilled field							
Cal. Check	May 19, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment							
Test Date	May 19, 2020	Method [∇]	enner 4-pin (ASTM G57-06 (2012); IEEE 81-2012							
Notes &		_								
Conflicts_										

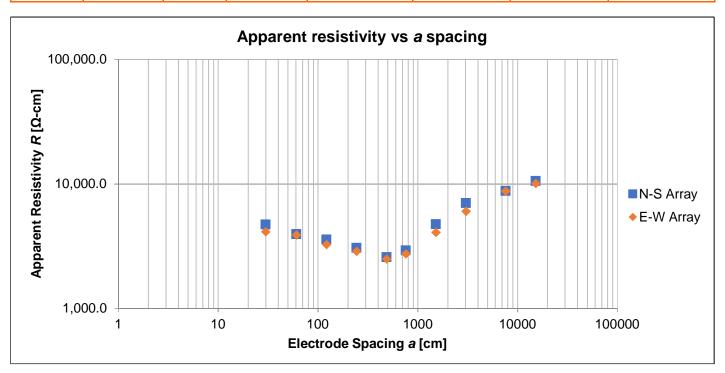
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S T	N-S Test		Test
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	12.19	3020	13.14	3260
2	61	6	15	6.62	2780	5.99	2520
4	122	6	15	2.23	1750	3.12	2450
8	244	6	15	1.69	2610	1.68	2600
16	488	12	30	1.18	3630	1.19	3660
25	762	12	30	1.10	5260	1.64	7880
50	1524	12	30	0.79	7610	0.99	9490
100	3048	12	30	0.49	9330	0.51	9850
250	7620	12	30	0.22	10290	0.20	9460
500	15240	12	30	0.12	11570	0.12	11330



Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.	Resistivity Array R-6								
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm						
Serial #	LRI SN276	Ground Cond.	Tilled field						
Cal. Check	May 19, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment						
Test Date	May 19, 2020	Method /	Venner 4-pin (ASTM G57-06 (2012); IEEE 81-2012						
Notes &									
Conflicts_									

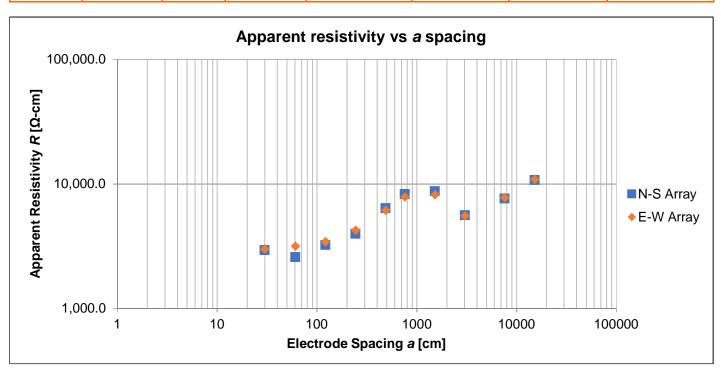
Electrode	Electrode Spacing a		de Depth b	N-S	N-S Test		Test
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>ρ</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	11.73	2910	13.68	3390
2	61	6	15	10.62	4460	7.83	3290
4	122	6	15	2.90	2280	3.58	2810
8	244	6	15	1.48	2280	1.52	2350
16	488	12	30	1.06	3270	1.06	3290
25	762	12	30	0.95	4560	0.98	4680
50	1524	12	30	0.78	7520	0.76	7270
100	3048	12	30	0.47	9030	0.42	7960
250	7620	12	30	0.18	8450	0.16	7880
500	15240	12	30	0.11	10910	0.10	9730


Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.		Resistivity Ar	ray R-7
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm
Serial #	LRI SN276	Ground Cond.	Tilled Field and Tree Farm
Cal. Check	May 19, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment
Test Date	May 19, 2020	Method ⁷	Venner 4-pin (ASTM G57-06 (2012); IEEE 81-2012
Notes &		_	
Conflicts_			

Apparent resistivity
$$\rho$$
 is calculated as : $\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$

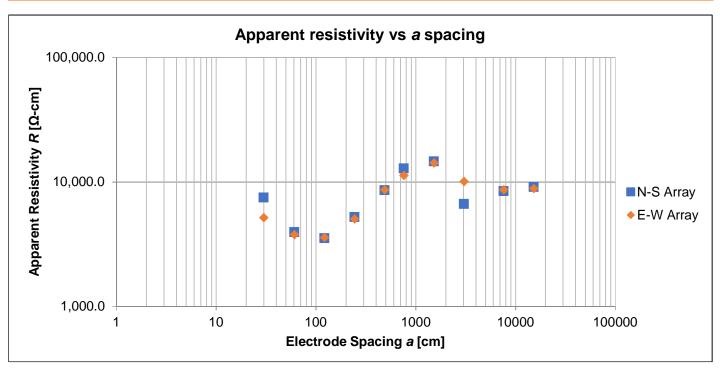
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S	Гest	E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	19.09	4730	16.60	4120
2	61	6	15	9.41	3960	9.27	3900
4	122	6	15	4.54	3570	4.15	3260
8	244	6	15	1.99	3070	1.86	2870
16	488	12	30	0.84	2580	0.81	2500
25	762	12	30	0.61	2930	0.57	2740
50	1524	12	30	0.50	4770	0.43	4080
100	3048	12	30	0.37	7040	0.31	6020
250	7620	12	30	0.18	8820	0.18	8770
500	15240	12	30	0.11	10590	0.11	10100



Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.		Resistivity Ar	ray R-8
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm
Serial #	LRI SN276	Ground Cond.	Tilled Field
Cal. Check	May 19, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment
Test Date	May 19, 2020	Method '	/enner 4-pin (ASTM G57-06 (2012); IEEE 81-2012
Notes &		_	
Conflicts_			

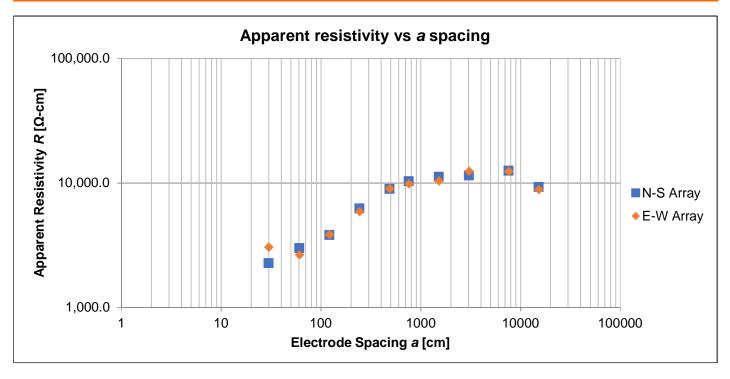
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S T	Γest	E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	11.85	2940	12.07	2990
2	61	6	15	6.13	2580	7.51	3160
4	122	6	15	4.12	3240	4.38	3440
8	244	6	15	2.59	3990	2.75	4250
16	488	12	30	2.07	6390	1.99	6140
25	762	12	30	1.73	8300	1.64	7850
50	1524	12	30	0.92	8780	0.86	8200
100	3048	12	30	0.29	5630	0.29	5550
250	7620	12	30	0.16	7640	0.16	7760
500	15240	12	30	0.11	10760	0.11	10880



Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.		Resistivity Array R-9								
Instrument	L & R Instruments UltraMini Res	Weather	Sunny War							
Serial #	LRI SN276	Ground Cond.	Tree farm with slight topographic relief							
Cal. Check	May 19, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment							
Test Date	May 19, 2020	Method ⁷	/enner 4-pin (ASTM G57-06 (2012); IEEE 81-2012							
Notes &		_								
Conflicts_										

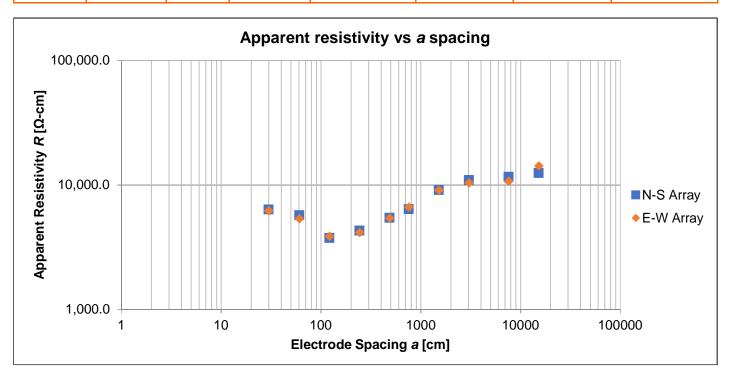
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S Test		E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	30.30	7520	20.90	5180
2	61	6	15	9.46	3970	9.00	3780
4	122	6	15	4.50	3540	4.53	3570
8	244	6	15	3.38	5220	3.27	5040
16	488	12	30	2.79	8610	2.80	8630
25	762	12	30	2.69	12890	2.36	11320
50	1524	12	30	1.53	14700	1.48	14200
100	3048	12	30	0.35	6670	0.53	10100
250	7620	12	30	0.18	8460	0.18	8650
500	15240	12	30	0.10	9130	0.09	8870



Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.		Resistivity Array R-10							
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm						
Serial #	LRI SN276	Ground Cond.	Tree farm with slight topographic relief						
Cal. Check	May 20, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment						
Test Date	May 20, 2020	Method ⁷	/enner 4-pin (ASTM G57-06 (2012); IEEE 81-2012						
Notes &		_	_						
Conflicts_									

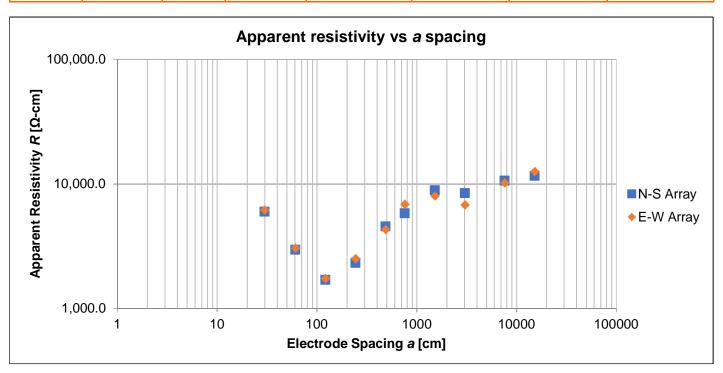
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S Test		E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	9.15	2270	12.28	3050
2	61	6	15	7.14	3000	6.31	2650
4	122	6	15	4.85	3820	4.89	3840
8	244	6	15	4.04	6240	3.82	5890
16	488	12	30	2.91	8980	2.93	9030
25	762	12	30	2.15	10310	2.06	9880
50	1524	12	30	1.17	11240	1.09	10400
100	3048	12	30	0.60	11480	0.65	12410
250	7620	12	30	0.26	12600	0.26	12410
500	15240	12	30	0.10	9280	0.09	8860


Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Resistivity Array R-11 Array Loc. L & R Instruments UltraMini Res Sunny and Warm Instrument Weather LRI SN276 Tilled Field and Tree Farm Serial # **Ground Cond.** Sean Paroski and Marshall Wayment May 20, 2020 (Field Calibration) **Tested By** Cal. Check May 20, 2020 Method Venner 4-pin (ASTM G57-06 (2012); IEEE 81-2012 **Test Date** Notes & **Conflicts**

Apparent resistivity
$$\rho$$
 is calculated as : $\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$

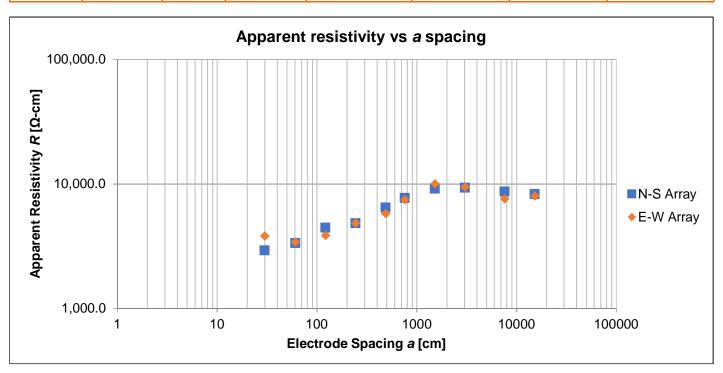
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S	Гest	E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	25.60	6350	25.00	6200
2	61	6	15	13.55	5700	12.76	5360
4	122	6	15	4.78	3760	4.92	3870
8	244	6	15	2.79	4310	2.68	4140
16	488	12	30	1.77	5460	1.75	5410
25	762	12	30	1.33	6390	1.38	6640
50	1524	12	30	0.95	9120	0.94	9050
100	3048	12	30	0.57	10980	0.54	10420
250	7620	12	30	0.24	11660	0.22	10740
500	15240	12	30	0.13	12520	0.15	14270


Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Resistivity Array R-12 Array Loc. L & R Instruments UltraMini Res Sunny and Warm Instrument Weather LRI SN276 Describe ground conditions Serial # **Ground Cond.** May 21, 2020 (Field Calibration) Sean Paroski and Marshall Wayment Cal. Check **Tested By** May 21, 2020 Method Venner 4-pin (ASTM G57-06 (2012); IEEE 81-2012 **Test Date** Notes & **Conflicts**

Apparent resistivity
$$\rho$$
 is calculated as : $\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$

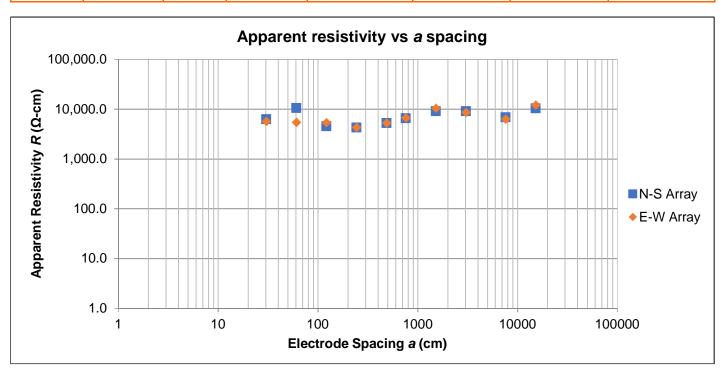
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S	Гest	E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>ρ</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>ρ</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	24.10	5980	24.90	6180
2	61	6	15	7.04	2960	7.25	3050
4	122	6	15	2.16	1700	2.22	1740
8	244	6	15	1.51	2330	1.62	2510
16	488	12	30	1.48	4560	1.39	4300
25	762	12	30	1.22	5830	1.43	6880
50	1524	12	30	0.93	8900	0.84	8010
100	3048	12	30	0.44	8450	0.35	6770
250	7620	12	30	0.22	10630	0.21	10240
500	15240	12	30	0.12	11620	0.13	12590


Dolores Canyon Solar ■ Near Cahone, CO January 15, 2021 ■ Terracon Project No. 6119523

Array Loc.		Resistivity Array R-13								
Instrument	L & R Instruments UltraMini Res	Weather	Sunny and Warm							
Serial #	LRI SN276	Ground Cond.	Tilled Field							
Cal. Check	May 21, 2020 (Field Calibration)	Tested By	Sean Paroski and Marshall Wayment							
Test Date	May 21, 2020	Method '	Venner 4-pin (ASTM G57-06 (2012); IEEE 81-2012							
Notes &		_								
Conflicts_										

Apparent resistivity
$$\rho$$
 is calculated as : $\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$

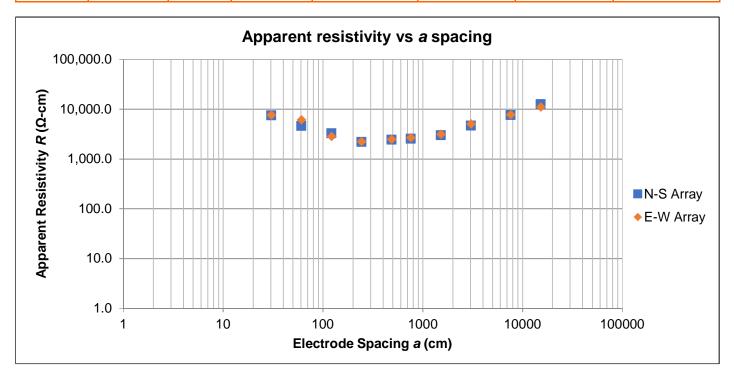
Electrode	Spacing <i>a</i>	Electrode Depth b		N-S	Гest	E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i>	Apparent Resistivity <i>ρ</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	[Ω-cm]	Ω	[Ω-cm]
1	30	6	15	11.81	2930	15.42	3820
2	61	6	15	7.99	3360	8.15	3420
4	122	6	15	5.67	4460	4.92	3870
8	244	6	15	3.13	4830	3.13	4830
16	488	12	30	2.10	6490	1.88	5790
25	762	12	30	1.61	7740	1.55	7460
50	1524	12	30	0.96	9190	1.05	10020
100	3048	12	30	0.49	9360	0.49	9430
250	7620	12	30	0.18	8690	0.16	7600
500	15240	12	30	0.09	8320	0.08	8000



Dolores Solar I ■ Cahone, Dolores County, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Array Loc.	FER-01 at 37.701801, -108.772476, (N-S and E-W arrays)		
Instrument	Ultra MiniRes	Weather	Cold, overcast
Serial #	LRI SN276	Ground Cond.	Bare soil
Cal. Check	Calibrated	Tested By	KP and CMA
Test Date	December 16, 2020	Method [∇]	enner 4-pin (ASTM G57-06 (2012); IEEE 81-2012
Notes &			_
Conflicts			

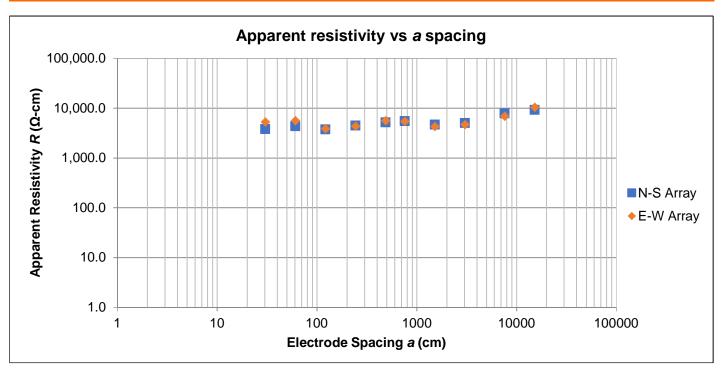
Electrode	Spacing <i>a</i>	Electro	de Depth b	N-S T	Test	E-W	Test
(feet)	(centimeters)	(inches)	(centimeters)	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	(Ω-cm)	Ω	(Ω-cm)
1	30	6	15	33.20	6358	30.00	5745
2	61	6	15	28.00	10725	14.30	5477
4	122	6	15	6.00	4596	7.00	5362
8	244	6	15	2.80	4290	2.80	4290
16	488	6	15	1.73	5304	1.73	5292
25	762	6	15	1.39	6650	1.41	6746
50	1524	6	15	0.96	9145	1.10	10533
100	3048	6	15	0.48	9231	0.45	8618
250	7620	6	15	0.15	6942	0.13	6320
500	15240	6	15	0.11	10437	0.13	12257


Dolores Solar I ■ Cahone, Dolores County, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Array Loc.	FER-02 at	37.717335, -108.771	673, (N-S and E-W arrays)
Instrument	Ultra MiniRes	Weather	Cold, overcast
Serial #	LRI SN276	Ground Cond.	Bare soil
Cal. Check	Calibrated	Tested By	KP and CMA
Test Date	December 16, 2020	Method \(\)	/enner 4-pin (ASTM G57-06 (2012); IEEE 81-2012
Notes &			
Conflicts			

Apparent resistivity
$$\rho$$
 is calculated as : $\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$

Electrode	Spacing <i>a</i>	Electro	de Depth b	N-S	Гest	E-W	Test
(feet)	(centimeters)	(inches)	(centimeters)	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	(Ω-cm)	Ω	(Ω-cm)
1	30	6	15	39.40	7546	40.30	7718
2	61	6	15	12.10	4635	16.00	6128
4	122	6	15	4.30	3294	3.70	2834
8	244	6	15	1.45	2225	1.48	2267
16	488	6	15	0.80	2454	0.81	2494
25	762	6	15	0.54	2585	0.56	2681
50	1524	6	15	0.32	3026	0.33	3179
100	3048	6	15	0.25	4692	0.27	5075
250	7620	6	15	0.16	7708	0.16	7804
500	15240	6	15	0.13	12736	0.12	11108



Dolores Solar I ■ Cahone, Dolores County, Colorado January 15, 2021 ■ Terracon Project No. 61195223

Array Loc.	FER-03 at 37	7.713910,108.779689,	(NE-SW and NW-SE arrays)
Instrument	Ultra MiniRes	Weather	Cold, overcast
Serial #	LRI SN276	Ground Cond.	Bare soil
Cal. Check	Calibrated	Tested By	KP and CMA
Test Date	December 16, 2020	Method Ve	nner 4-pin (ASTM G57-06 (2012); IEEE 81-2012
Notes &			
Conflicts			

Electrode	Spacing <i>a</i>	Electro	de Depth b	NE-SW	/ Test	NW-S	E Test
(feet)	(centimeters)	(inches)	(centimeters)	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>	Measured Resistance <i>R</i>	Apparent Resistivity <i>p</i>
				Ω	(Ω-cm)	Ω	(Ω-cm)
1	30	6	15	20.00	3830	27.60	5286
2	61	6	15	11.40	4366	14.70	5630
4	122	6	15	4.90	3754	5.12	3922
8	244	6	15	2.95	4520	2.86	4380
16	488	6	15	1.72	5261	1.83	5620
25	762	6	15	1.16	5554	1.15	5511
50	1524	6	15	0.50	4740	0.45	4309
100	3048	6	15	0.27	5113	0.25	4692
250	7620	6	15	0.17	7900	0.15	6942
500	15240	6	15	0.10	9288	0.11	10437

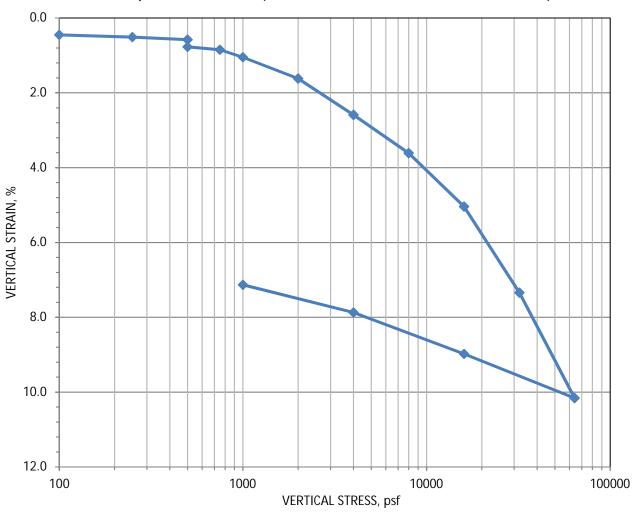
APPENDIX C - LABORATORY TEST RESULTS

Contents:

Exhibits C-1 through C-10: Swell Consolidation Test (10 pages)

Exhibits C-11 through C-17: Grain Size Distribution (5 pages)

Exhibits C-18 through C-38: Moisture-Density Relationship (21 pages)


Exhibits C-24 through C-31: Thermal Resistivity Test Results (8 pages)

Exhibits C-32 through C-38: Analytical Test Results (7 pages)

Exhibits C-39 through C-43: California Bearing Ratio Test Results (5 pages)

Exhibits C-44 through C-49: Summary of Laboratory Test Results (6pages)

Note: All attachments are one page unless noted above.

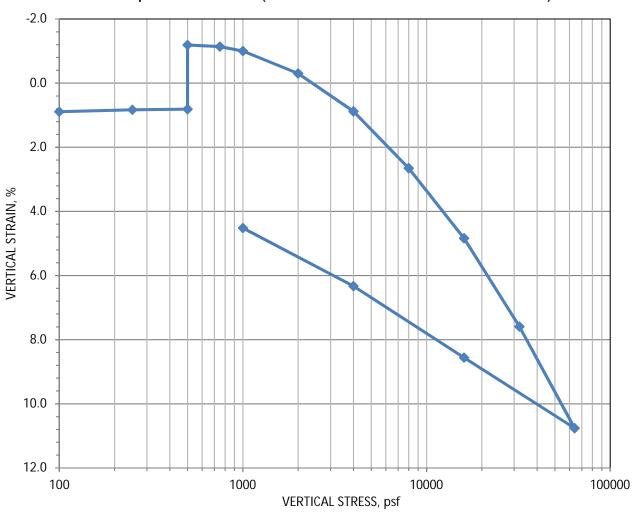
Before	Consol	lidatio	n
	92	mnla	Dia

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 132
Sample Height (in): 1 Moisture Content (%): 16
Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 114

After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 133
Sample Height (in): 0.97415 Moisture Content (%): 14
Sample Volume (cf): 0.0025 Dry Unit Weight (pcf): 117

Percent Collapse/Swell


Collapse 0.20 %

Liquid Limit: 31 Percent Fines: 86.5
Plasticity Index: 16 Classification: Lean Clay

Project Name: Dolores Canyon Project No.: 61195223 Location: Near Cahone, CO

Sample: B-1-2@ 5'

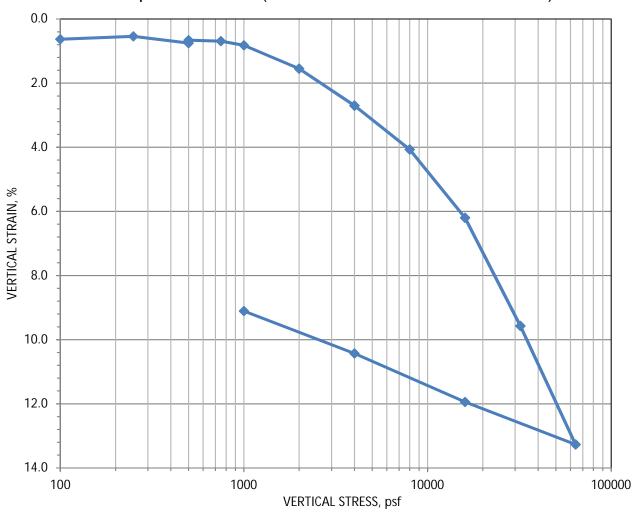
Before Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 125 Moisture Content (%): Sample Height (in): 17 Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 108

After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 131 Sample Height (in): 0.991153 Moisture Content (%): 21 Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 109

Percent Collapse/Swell


-2.00 % Swell

Liquid Limit: 48 Percent Fines: 74 Plasticity Index: 21 Classification: Lean Clay with Sand

Project Name: Dolores Canyon Project No.: 61195223 Location: Near Cahone, CO

Sample: B-3-3 @ 5'

	lidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 125
Sample Height (in): 1 Moisture Content (%): 16
Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 108

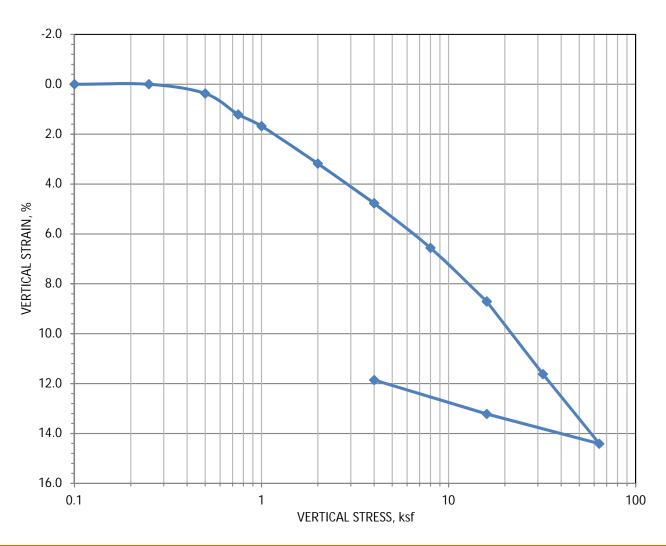
After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 132
Sample Height (in): 0.973 Moisture Content (%): 19
Sample Volume (cf): 0.0025 Dry Unit Weight (pcf): 111

Percent Collapse/Swell

Swell -0.10 %

Liquid Limit: 34 Percent Fines: 85
Plasticity Index: 17 Classification: Lean Clay with Sand



Project Name: Dolores Canyon Project No.: 61195223

Location: Near Cahone, CO

Sample: B-4-4@ 5'

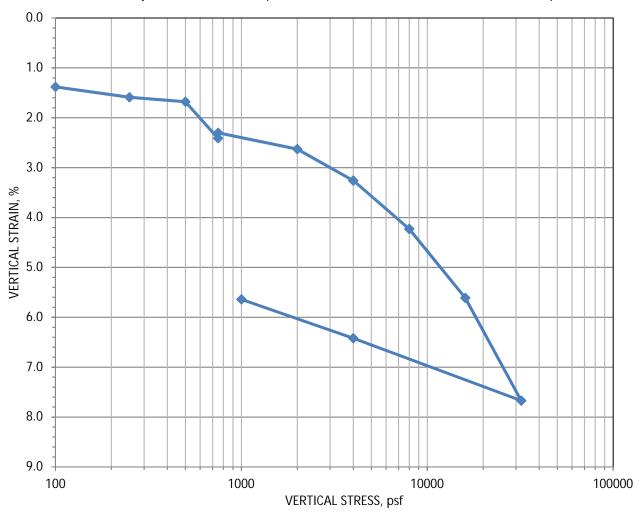
Consolidation Test Data (ASTM D2435)

Before Consolidation

126 Sample Diameter (in): 2.40 Moist Unit Weight (pcf): Moisture Content (%): Sample Height (in): 21 Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 105

After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 142 Sample Height (in): Moisture Content (%): 18 0.8736 Sample Volume (cf): 0.0023 Dry Unit Weight (pcf): 120


> Liquid Limit: 29 Percent Fines: 81%

Plasticity Index: Classification: Lean Clay with Sand 14

Project Name: Dolores Canyon Project No.: 61195223 Location: Near Cahone, CO

Sample: B-5-2 @ 5'

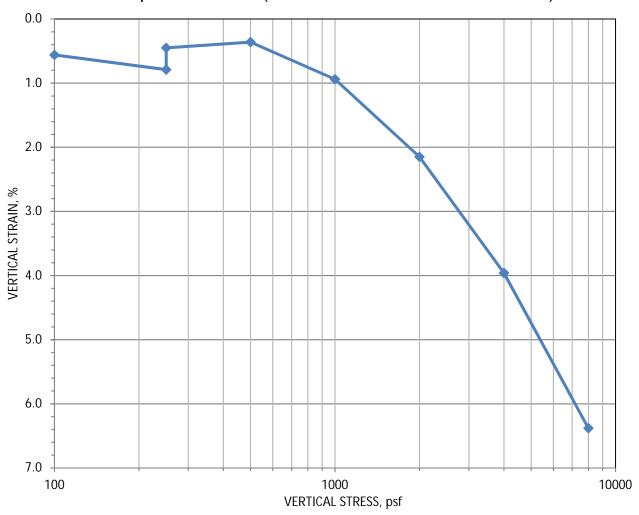
Before Consolida:	tion
-------------------	------

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 129
Sample Height (in): 1 Moisture Content (%): 16
Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 111

After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 140
Sample Height (in): 0.95772 Moisture Content (%): 21
Sample Volume (cf): 0.0025 Dry Unit Weight (pcf): 116

Percent Collapse/Swell


Swell -0.10 %

Liquid Limit: 32 Percent Fines: 82
Plasticity Index: 14 Classification: Lean clay with sand

Project Name: Dolores Canyon Solar Project

Project No.: 61195223 Location: Cahone, CO Sample: BH-6 @ 5

Before Consolidation

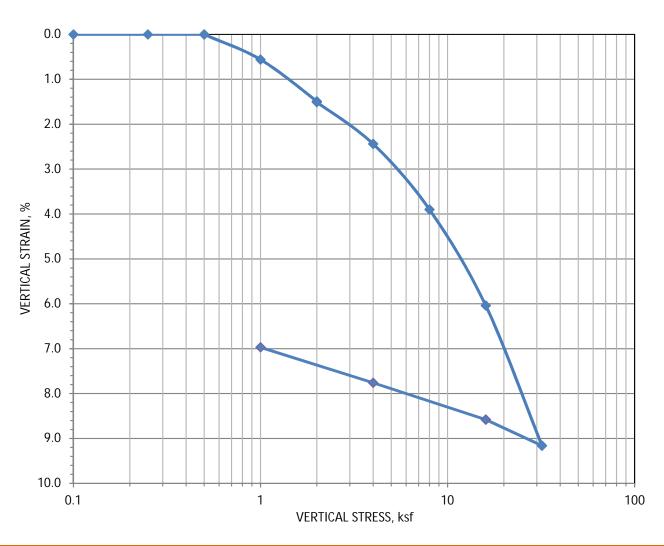
Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 126
Sample Height (in): 1 Moisture Content (%): 17
Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 108

After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 136
Sample Height (in): 0.93617 Moisture Content (%): 18
Sample Volume (cf): 0.0025 Dry Unit Weight (pcf): 115

Percent Collapse/Swell

Swell -0.30 %


Liquid Limit: 31 Percent Fines: 88
Plasticity Index: 15 Classification: Lean clay

Project Name: Dolores Canyon Solar Project

Project No.: 61195223 Location: Cahone, CO Sample: BH-8 @ 2.5

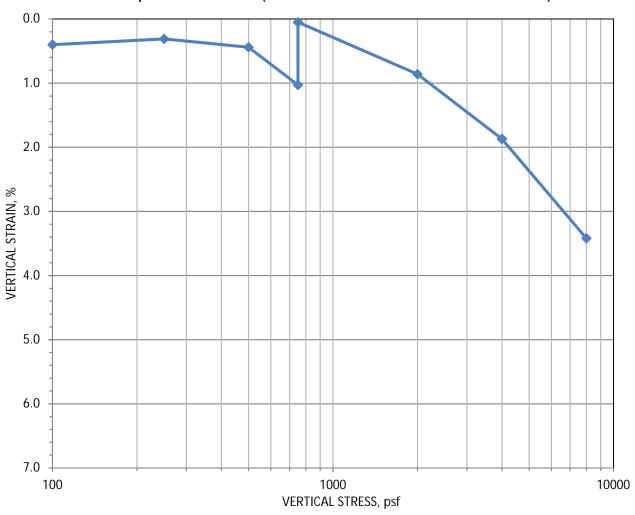
Consolidation Test Data (ASTM D2435-04)

Before Consolidation

Sample Diameter (in): 2.50 Moist Unit Weight (pcf): 124
Sample Height (in): 1 Moisture Content (%): 17
Sample Volume (cf): 0.0028 Dry Unit Weight (pcf): 106

After Consolidation

Sample Diameter (in): 2.50 Moist Unit Weight (pcf): 133
Sample Height (in): 0.92543 Moisture Content (%): 16
Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 114


Liquid Limit: 37 Percent Fines: 88% Plasticity Index: 21 Classification: Lean clay

Project Name: Dolores Canyon Solar Project

Project No.: 61195223 Location: Cahone, CO Sample: BH-8 @ 12.5

Collapse Test Data (ASTM D2435 or D4546 Method C)

Doforo	Canac	lidation
perore	COHSC	muauon

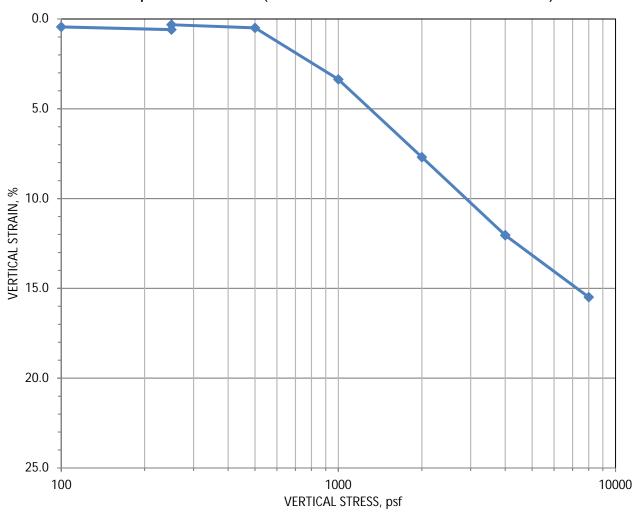
Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 131
Sample Height (in): 1 Moisture Content (%): 21
Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 109

After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 139
Sample Height (in): 0.96577 Moisture Content (%): 24
Sample Volume (cf): 0.0025 Dry Unit Weight (pcf): 113

Percent Collapse/Swell

Swell -1.00 %


Liquid Limit: 36 Percent Fines: 78
Plasticity Index: 21 Classification: Lean clay with sand

Project Name: Dolores Canyon Solar Project

Project No.: 61195223 Location: Cahone, CO Sample: BH-18 @ 5

Collapse Test Data (ASTM D2435 or D4546 Method C)

Before Cons	olidation
-------------	-----------

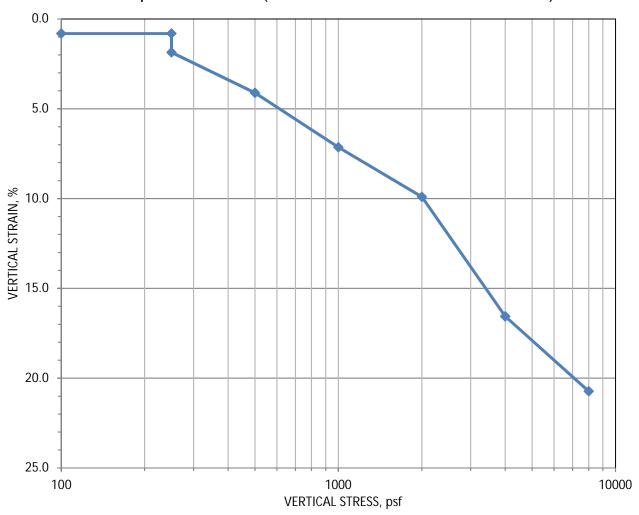
Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 102
Sample Height (in): 1 Moisture Content (%): 9
Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 94

After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 129
Sample Height (in): 0.8451 Moisture Content (%): 16
Sample Volume (cf): 0.0022 Dry Unit Weight (pcf): 111

Percent Collapse/Swell

Swell -0.30 %


Liquid Limit: 30 Percent Fines: 83
Plasticity Index: 14 Classification: Lean Clay with Sand

Project Name: Dolores Canyon Project No.: 61195223 Location: Near Cahone, CO

Sample: BH-24 @ 2.5

Collapse Test Data (ASTM D2435 or D4546 Method C)

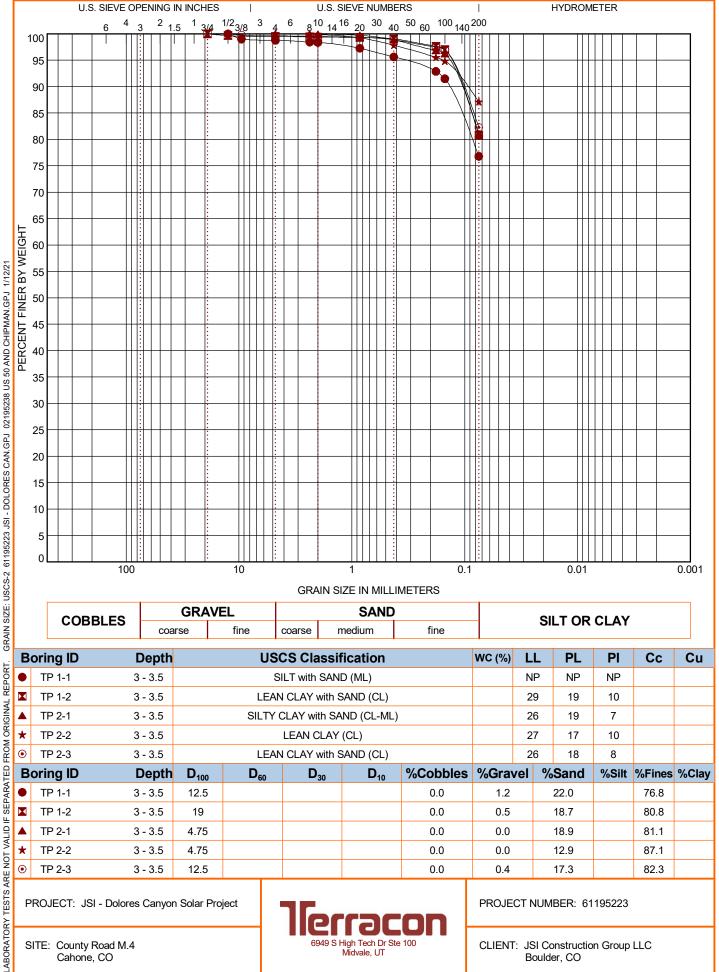
Betore	Consol	lidation
--------	--------	----------

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 93
Sample Height (in): 1 Moisture Content (%): 9
Sample Volume (cf): 0.0026 Dry Unit Weight (pcf): 85

After Consolidation

Sample Diameter (in): 2.40 Moist Unit Weight (pcf): 132
Sample Height (in): 0.7927 Moisture Content (%): 23
Sample Volume (cf): 0.0021 Dry Unit Weight (pcf): 107

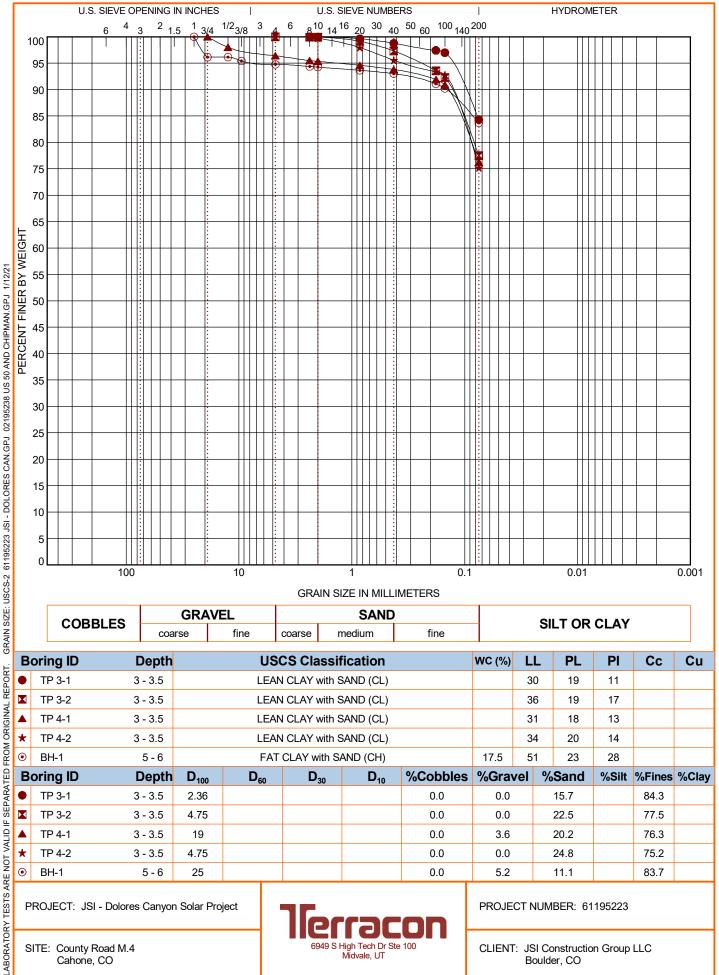
Percent Collapse/Swell


Collapse 1.10 %

Liquid Limit: 27 Percent Fines: 84
Plasticity Index: 11 Classification: Lean clay with sand

Project Name: Dolores Canyon Project No.: 61195223 Location: Cahone, CO Sample: BH-31 @ 2.5

ASTM D422 / ASTM C136

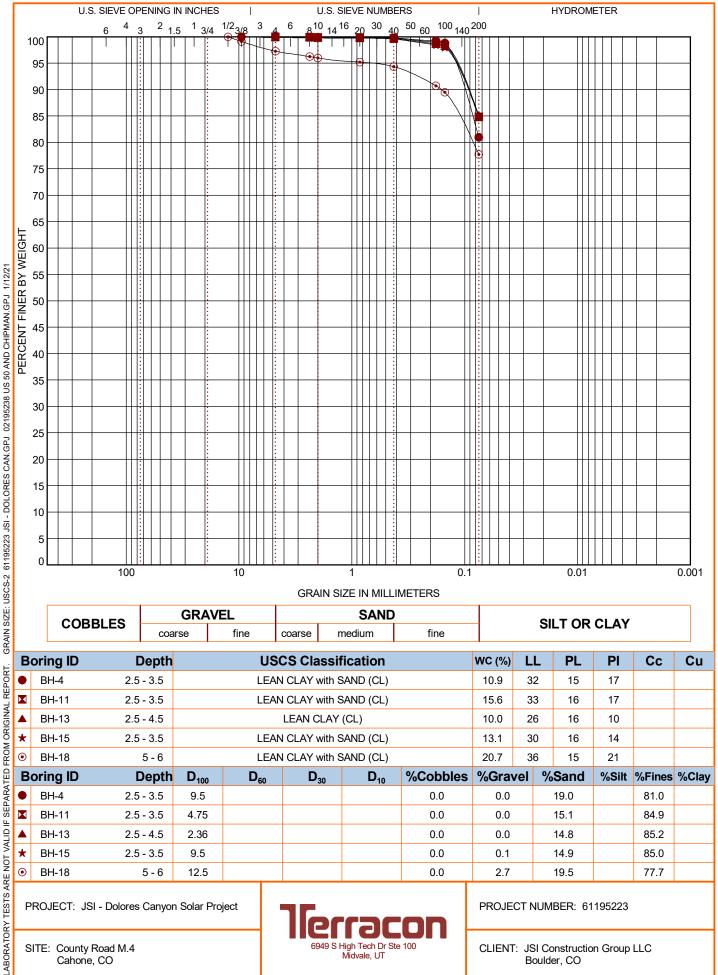


SITE: County Road M.4 Cahone, CO

CLIENT: JSI Construction Group LLC

Boulder, CO

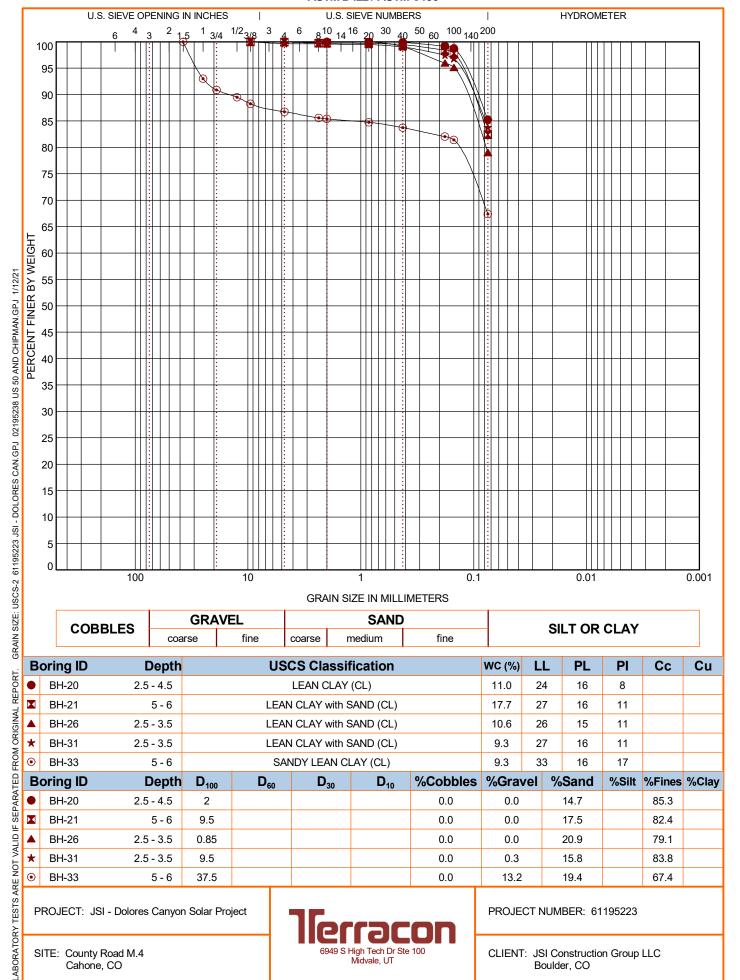
ASTM D422 / ASTM C136


SITE: County Road M.4 Cahone, CO

CLIENT: JSI Construction Group LLC

Boulder, CO

ASTM D422 / ASTM C136

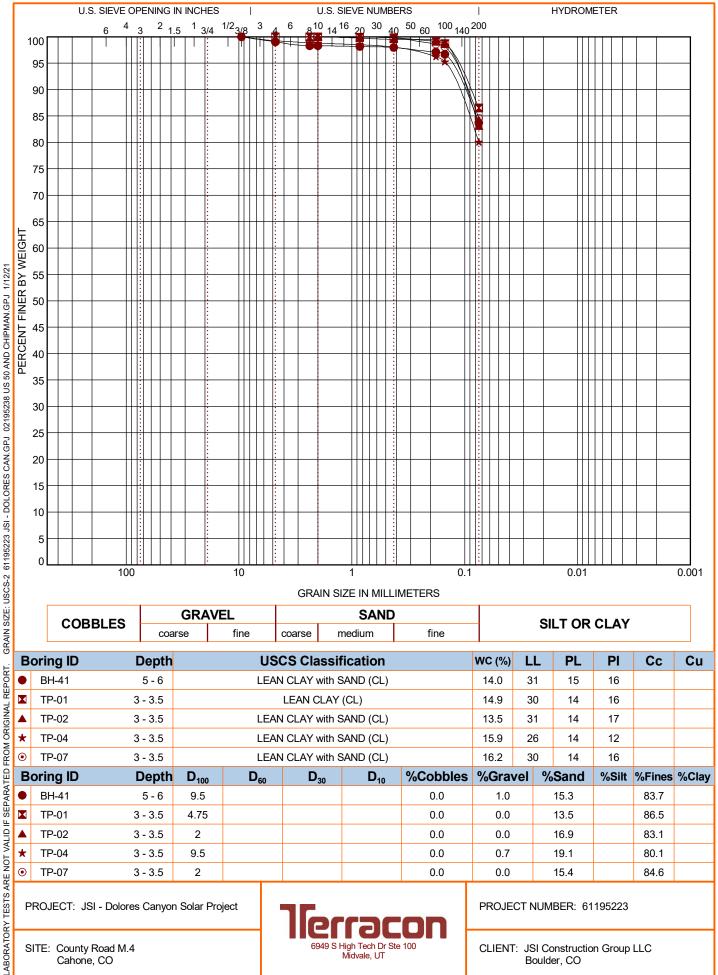


SITE: County Road M.4 Cahone, CO

CLIENT: JSI Construction Group LLC

Boulder, CO

ASTM D422 / ASTM C136

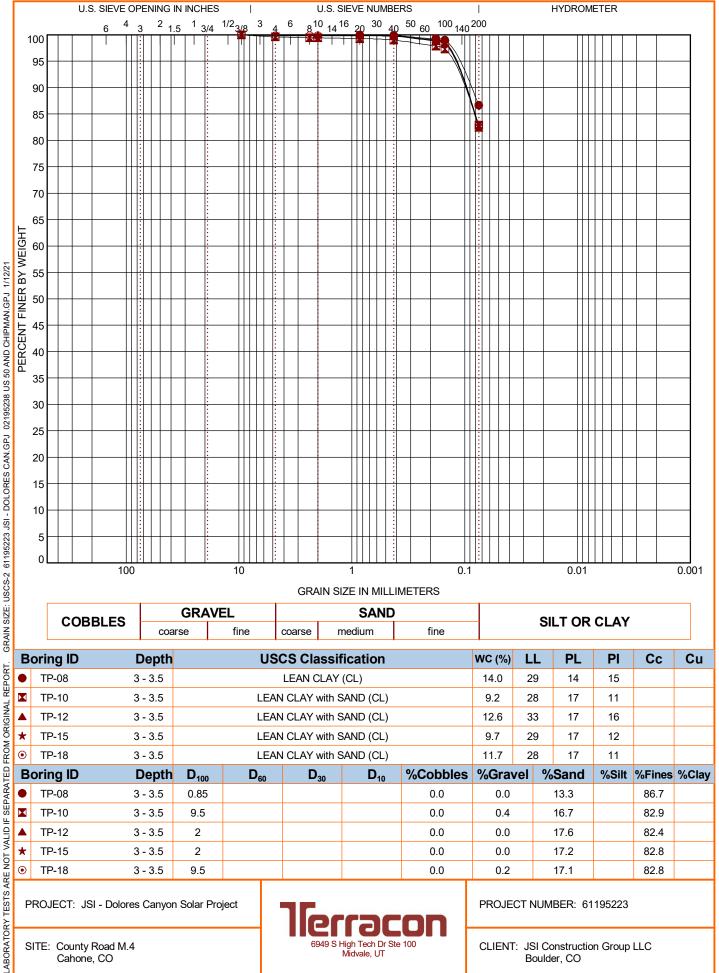

CLIENT: JSI Construction Group LLC

Boulder, CO

SITE: County Road M.4

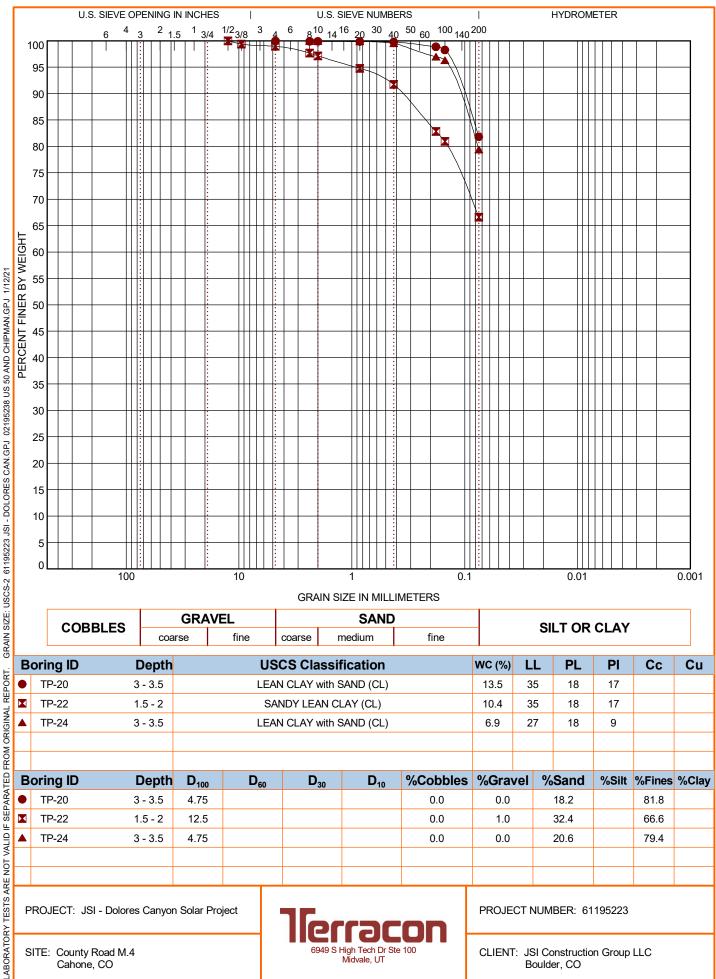
Cahone, CO

ASTM D422 / ASTM C136


CLIENT: JSI Construction Group LLC

Boulder, CO

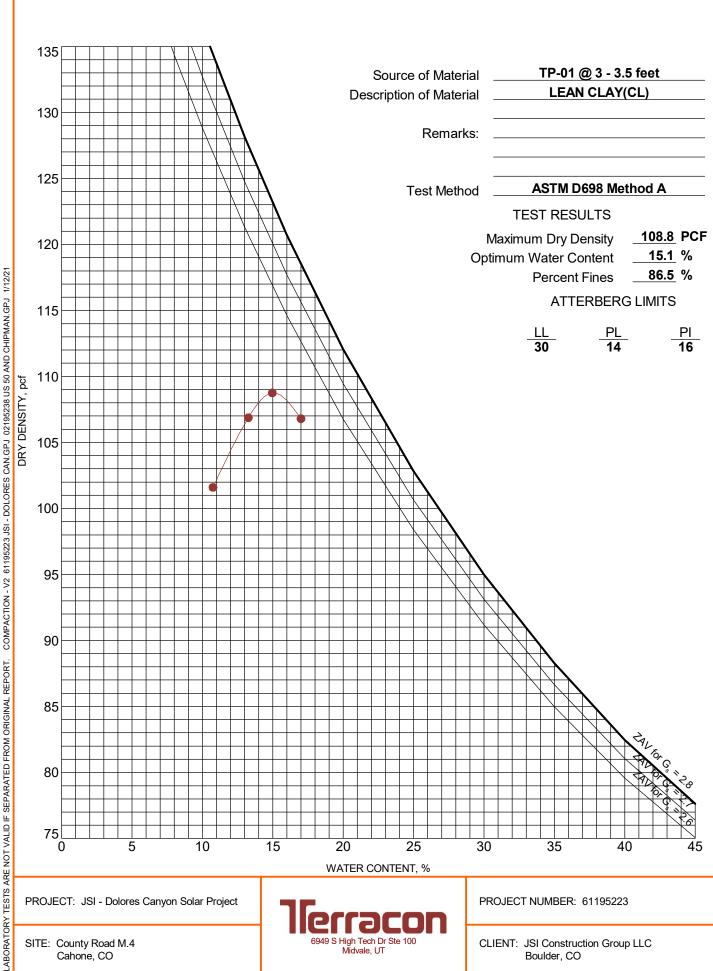
SITE: County Road M.4


Cahone, CO

ASTM D422 / ASTM C136

SITE: County Road M.4 Cahone, CO

ASTM D422 / ASTM C136

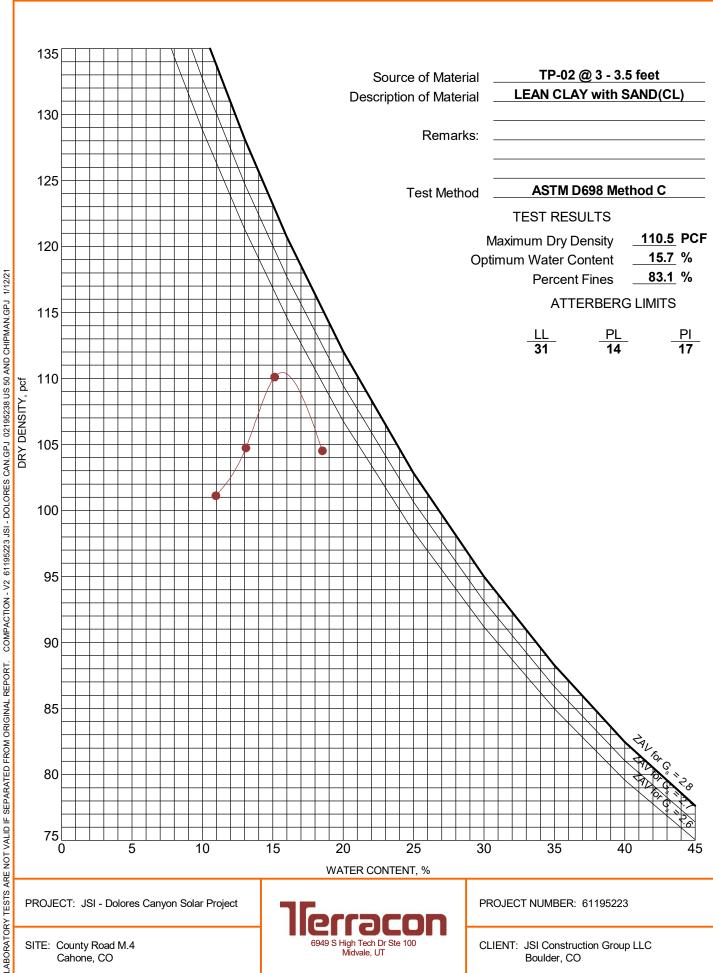

CLIENT: JSI Construction Group LLC

Boulder, CO

SITE: County Road M.4

Cahone, CO

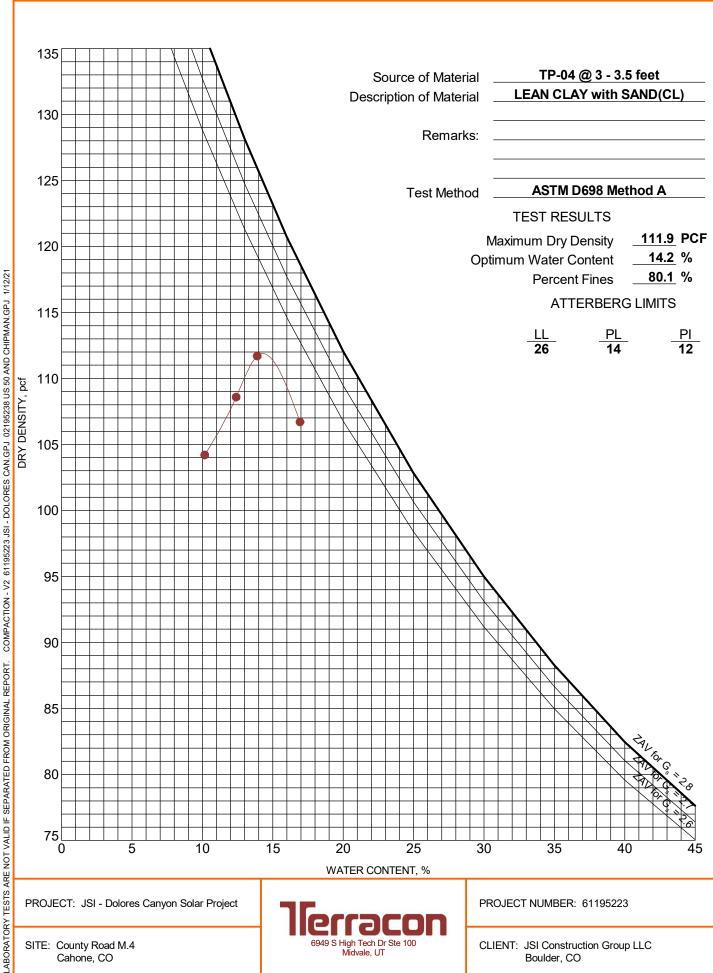
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

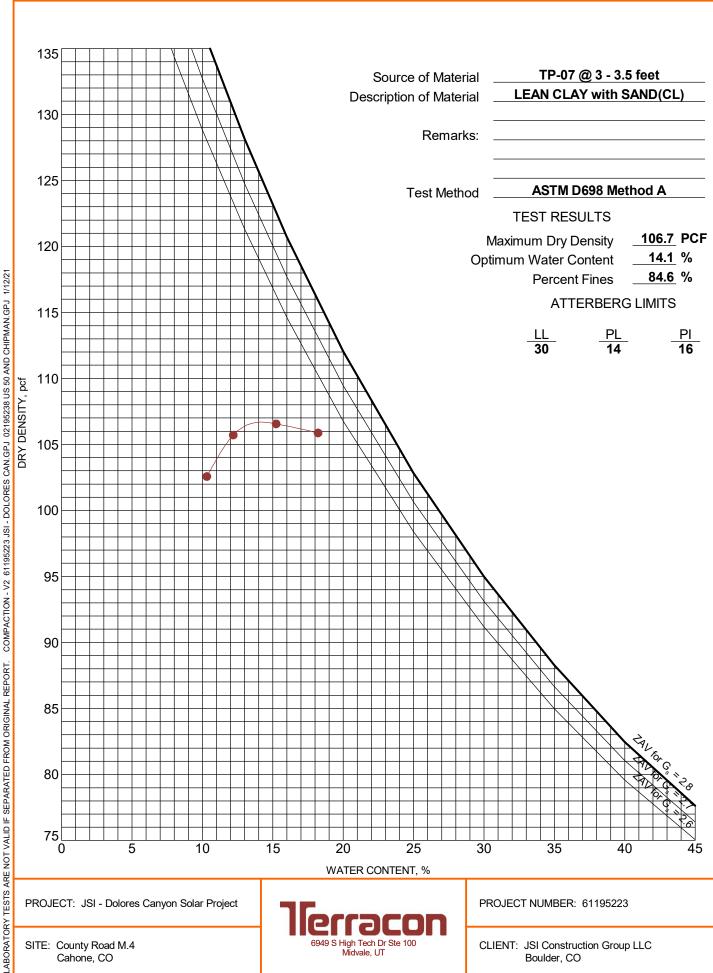
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

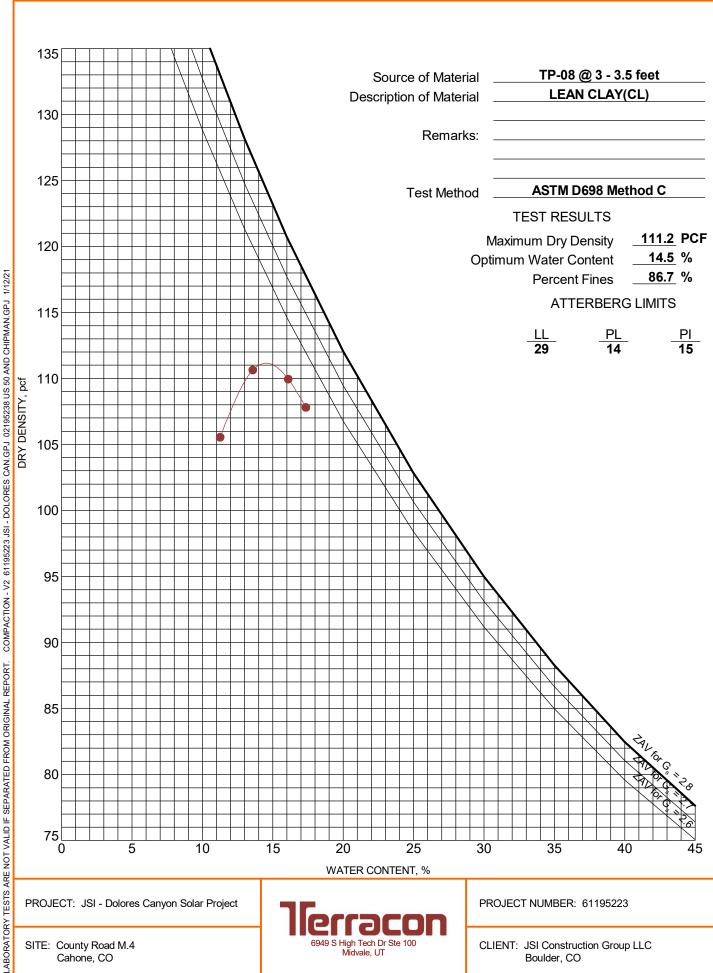
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

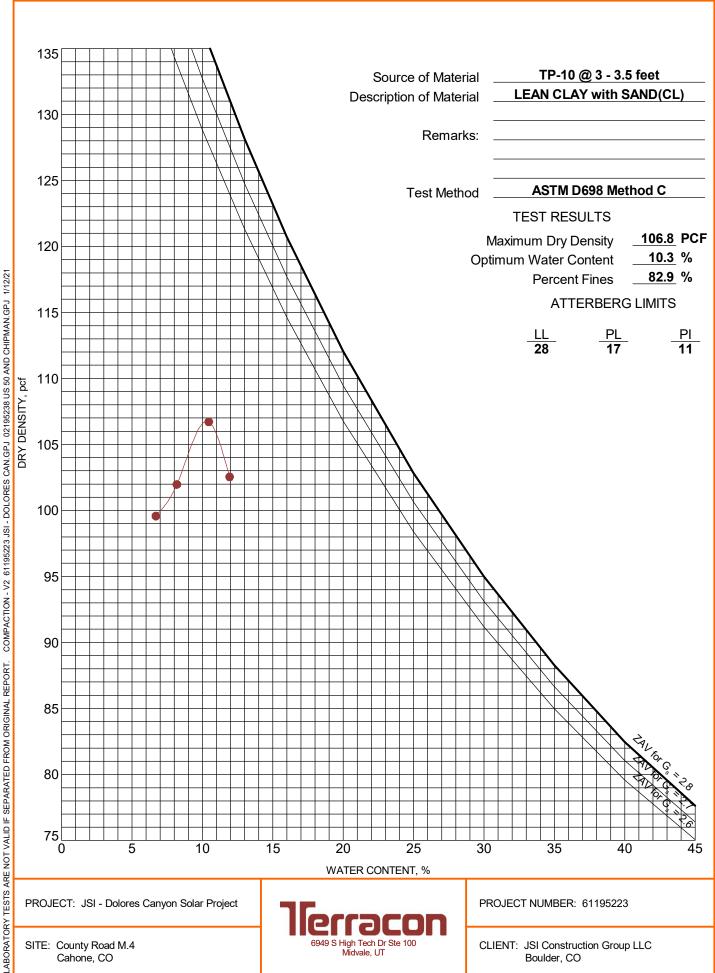
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

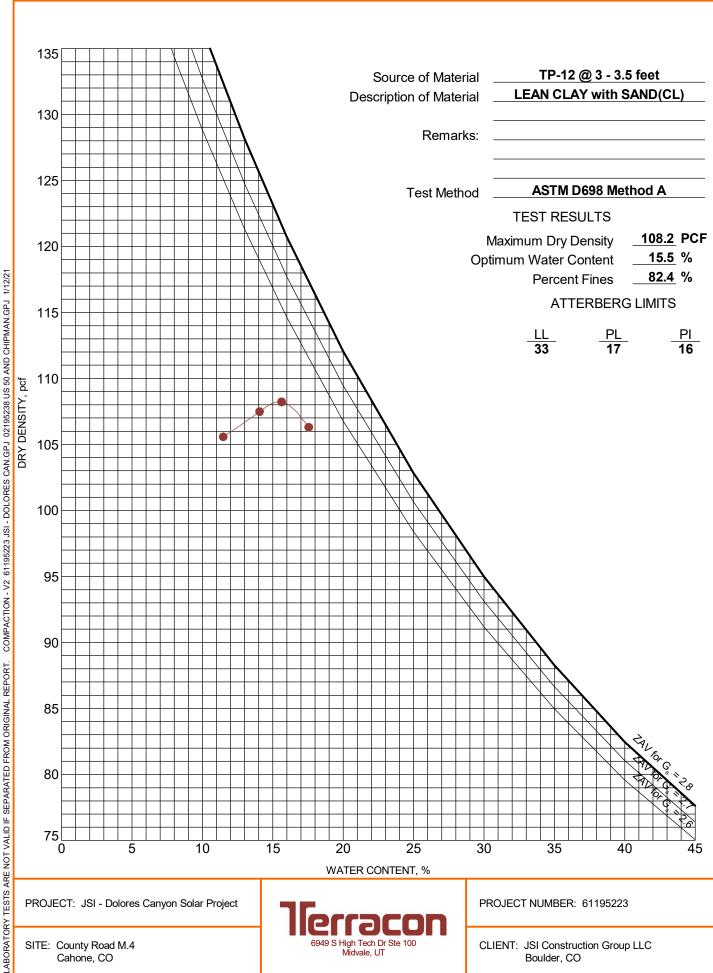
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

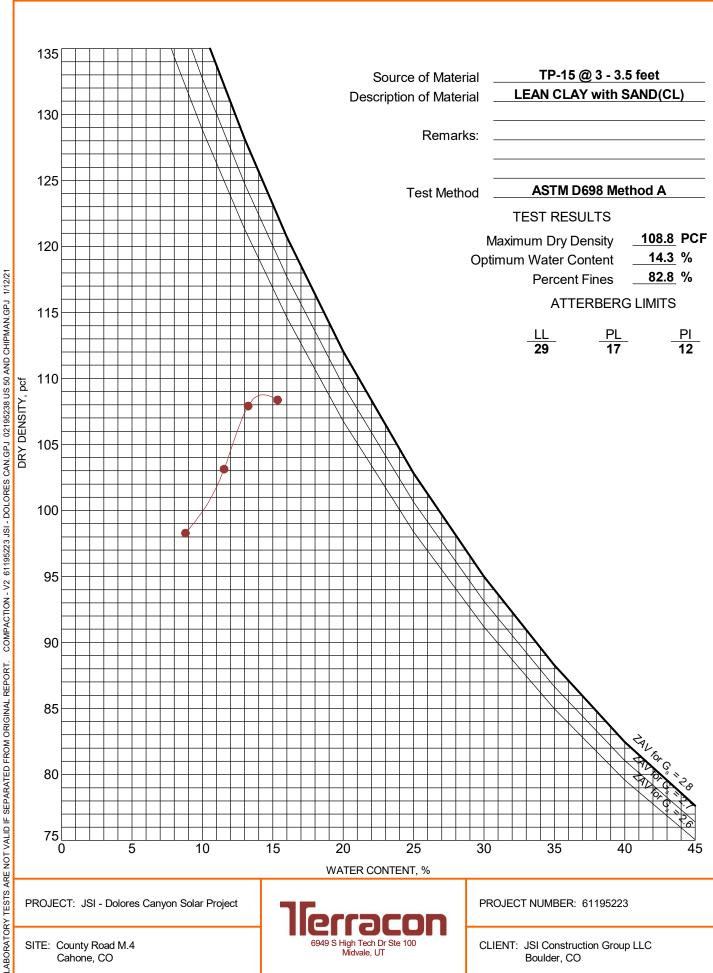
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

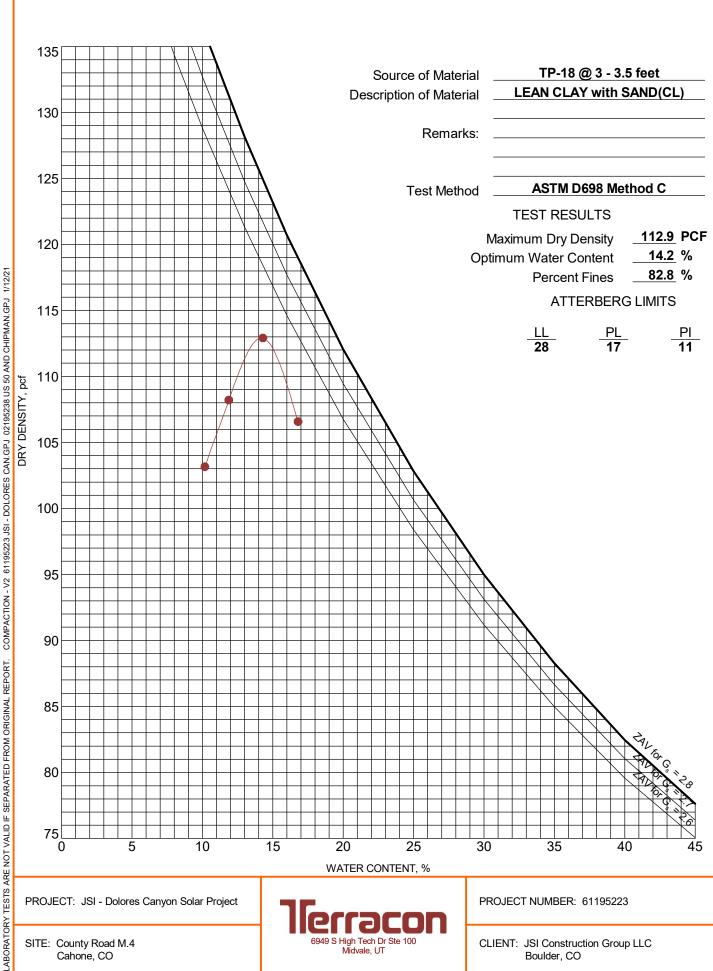
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

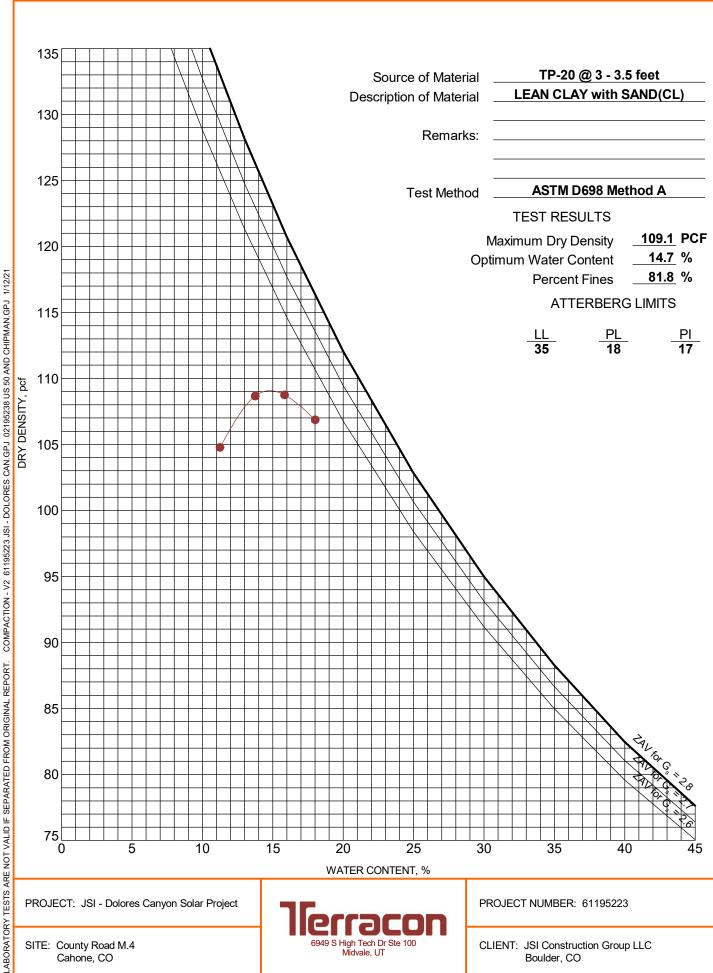
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

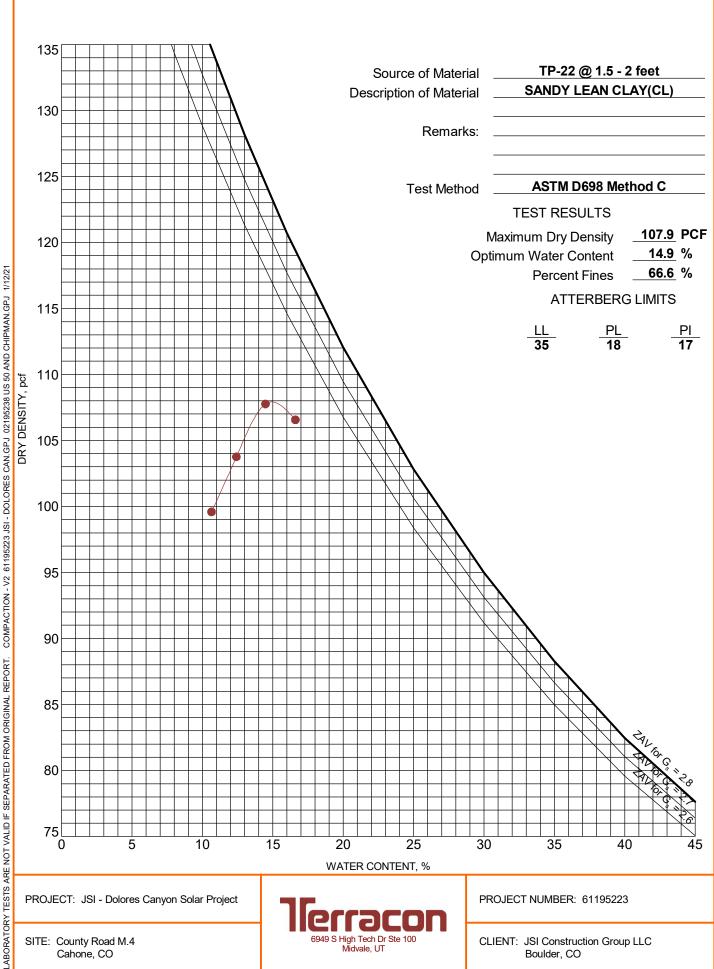
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

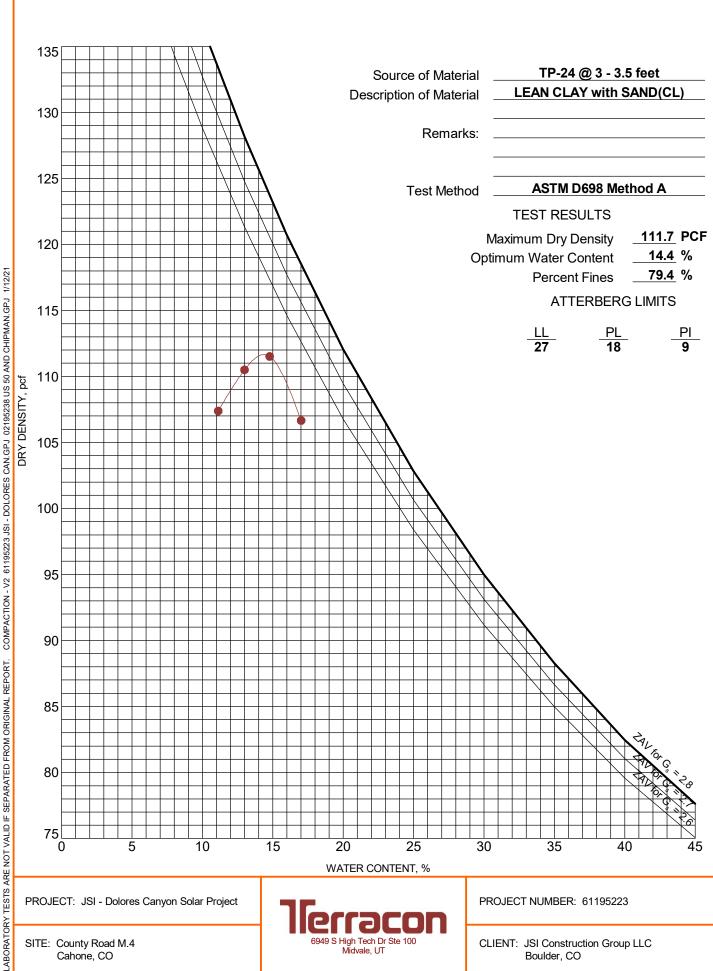
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

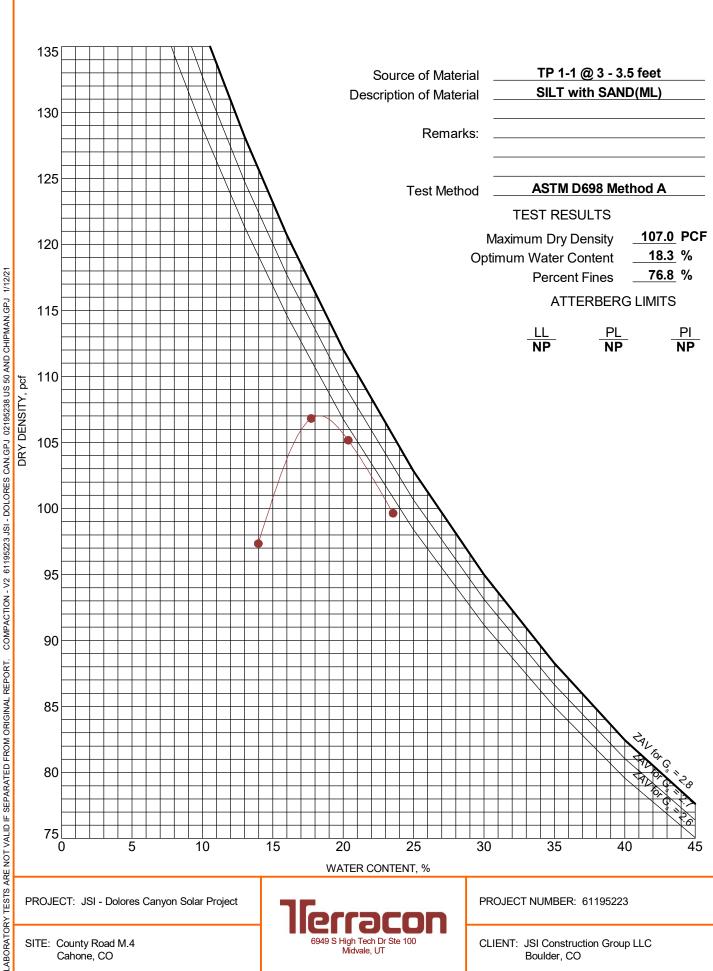
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

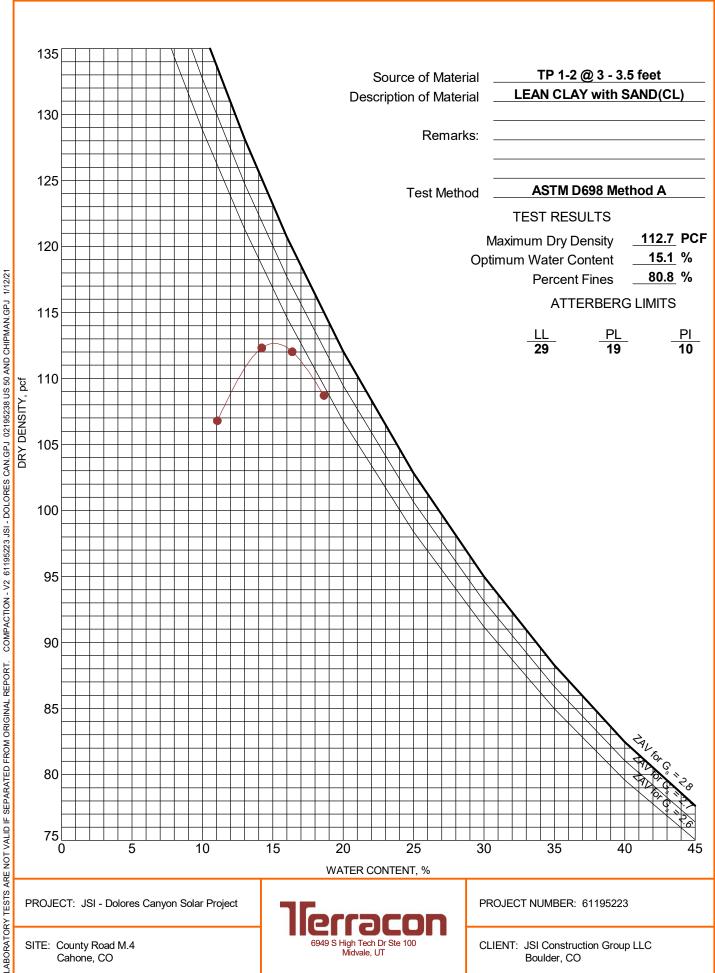
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

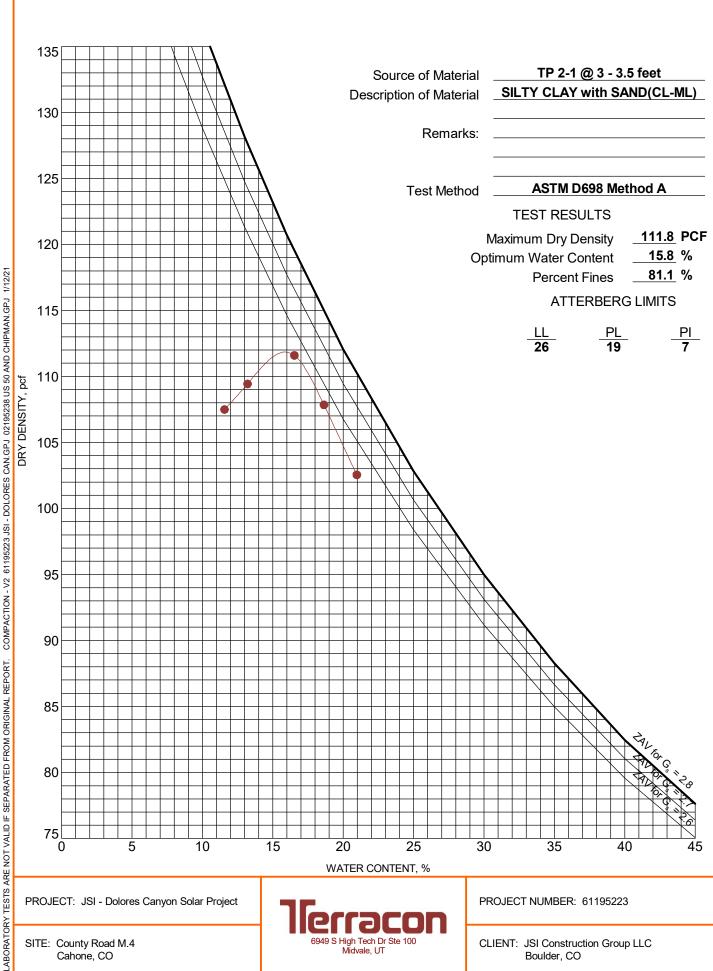
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

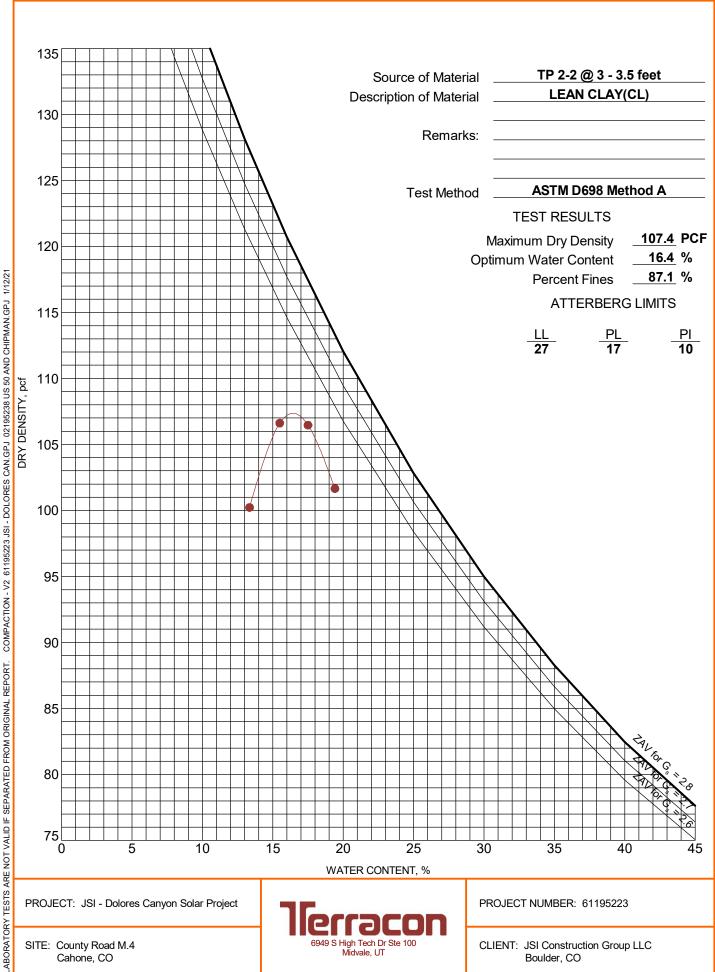
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

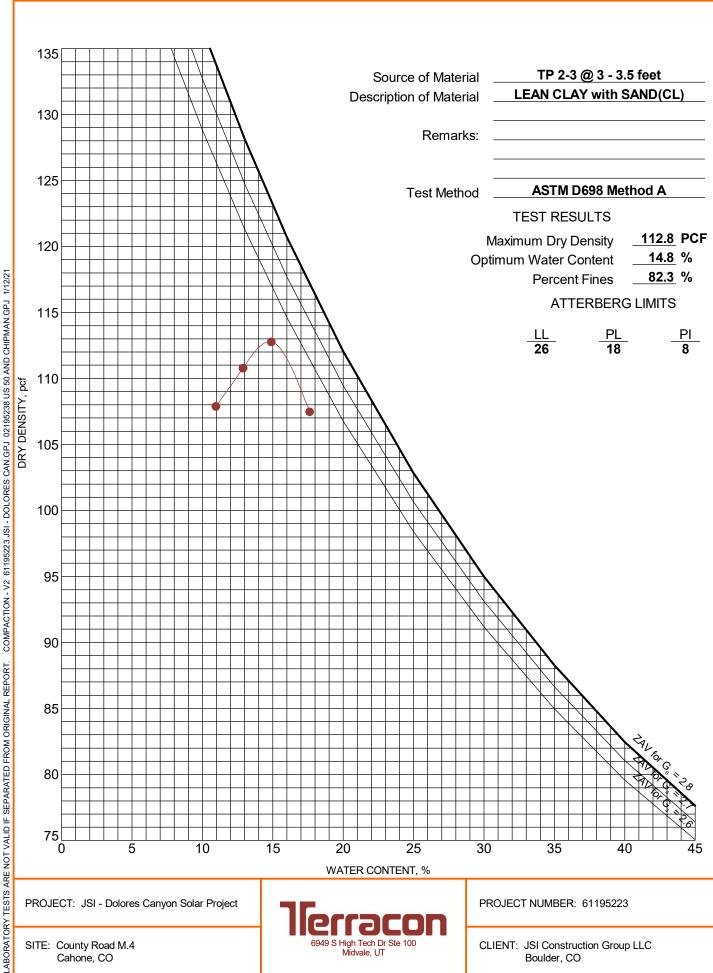
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

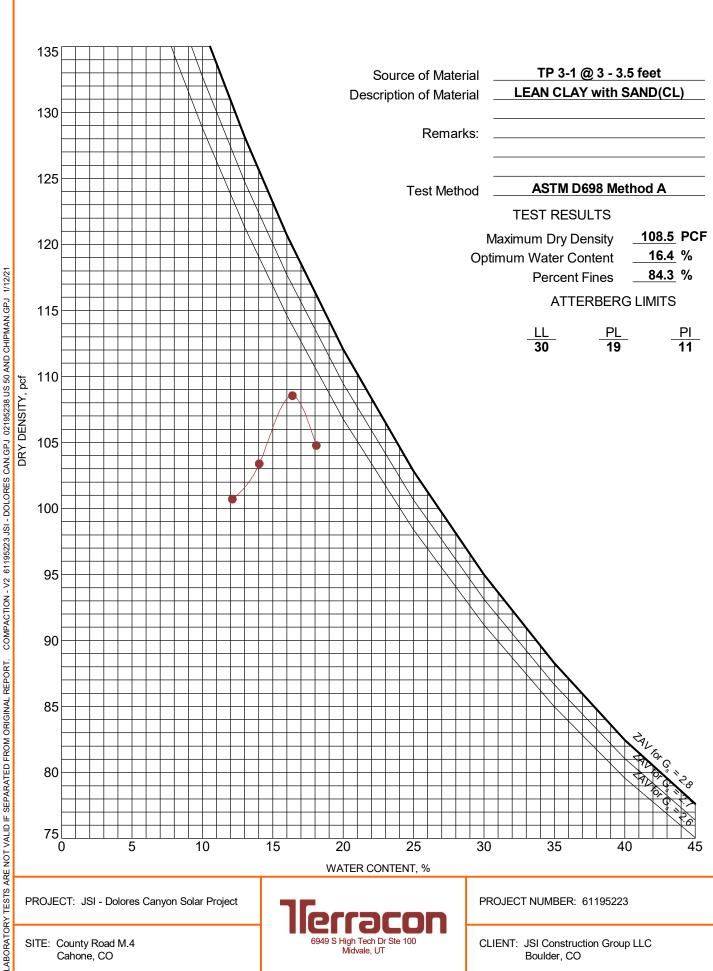
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

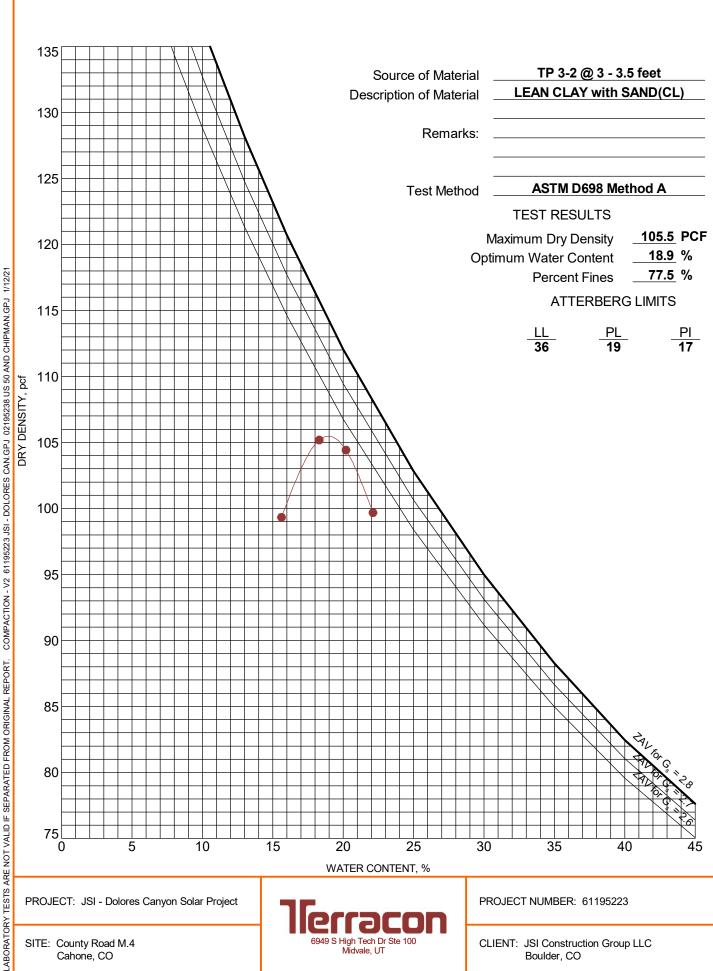
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

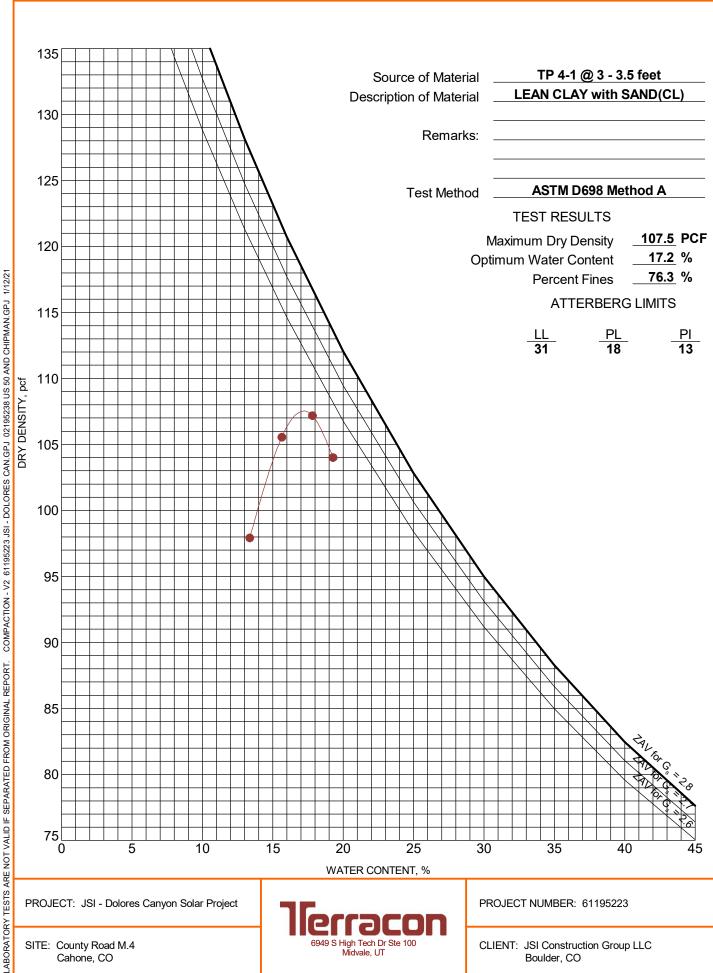
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

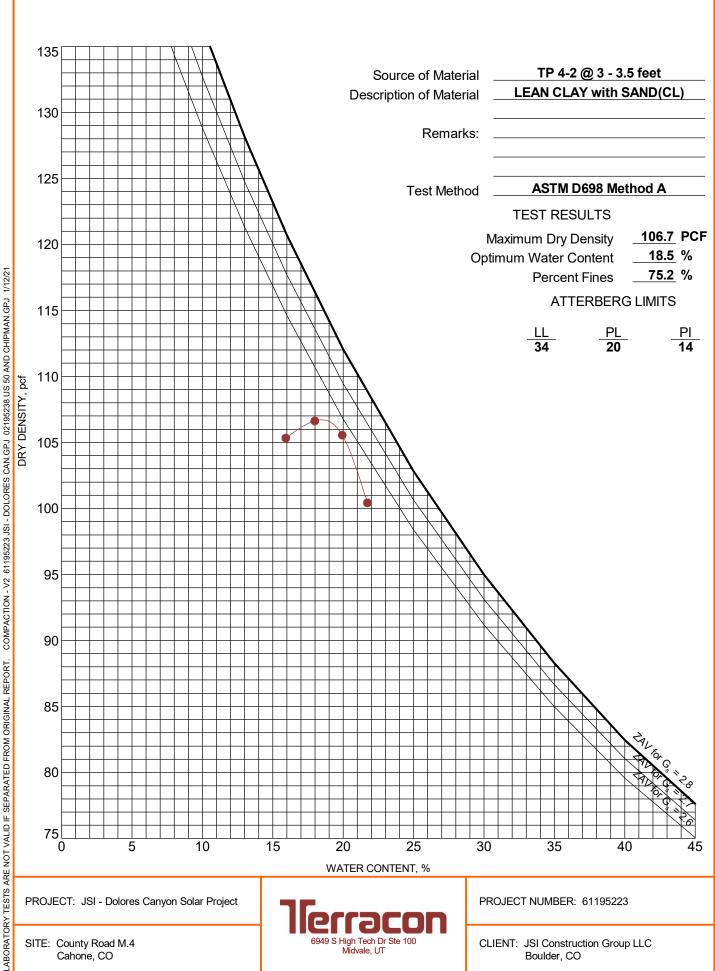
ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

ASTM D698/D1557


PROJECT: JSI - Dolores Canyon Solar Project

SITE: County Road M.4 Cahone, CO

PROJECT NUMBER: 61195223

ASTM D698/D1557

SITE: County Road M.4 Cahone, CO

January 13, 2021

21239 FM529 Rd., Bldg. F

Cypress, TX 77433
Tel: 281-985-9344
Fax: 832-427-1752
info@geothermusa.com

http://www.geothermusa.com

Terracon Consultants, Inc. 6949 S. High Tech Drive Midvale UT 84047

Attn: Charles Molthen, P.E.

Re: Thermal Analysis of Native Soil Samples

<u>Dolores Canyon Solar Project - Cahone, CO (Project No. 61195223)</u>

The following is the report of thermal dryout characterization tests conducted on nine (9) soil samples from the referenced project sent to our laboratory.

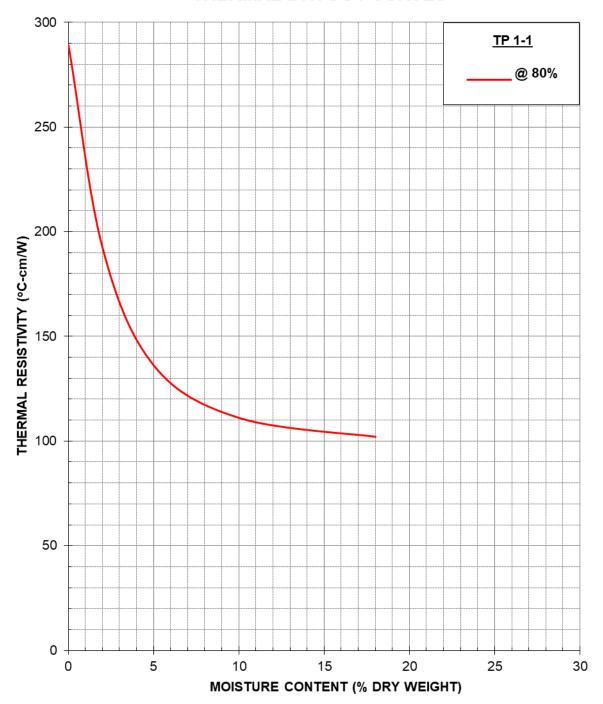
<u>Thermal Resistivity Tests:</u> The samples from were tested at the 'optimum' moisture content and at 80% or 90% of the maximum dry density *provided by Terracon*. The tests were conducted in accordance with the IEEE standard 442-2017. The results are tabulated below and the thermal dry out curves are presented in **Figures 1 to 9**.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID Effort (%)	Description (Terracon)	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density	
		Wet	Dry	(%)	(lb/ft³)	
TP 1-1	80	Silt with Sand (ML)	102	289	18.0	86
TP 1-2	90	Lean Clay with Sand (CL)	70	193	15.0	101
TP 2-1	80	Silty Clay with Sand (CL-ML)	85	242	16.0	89
TP 2-2	90	Lean Clay (CL)	76	208	16.0	97
TP 2-3	80	Lean Clay with Sand (CL)	84	240	15.0	90
TP 3-1	80	Lean Clay with Sand (CL)	88	249	16.0	87
TP 3-2	90	Lean Clay with Sand (CL)	73	195	19.0	95
TP 4-1	80	Lean Clay with Sand (CL)	89	286	17.0	86
TP 4-2	90	Lean Clay with Sand (CL)	72	187	18.0	96

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

<u>Comments:</u> The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

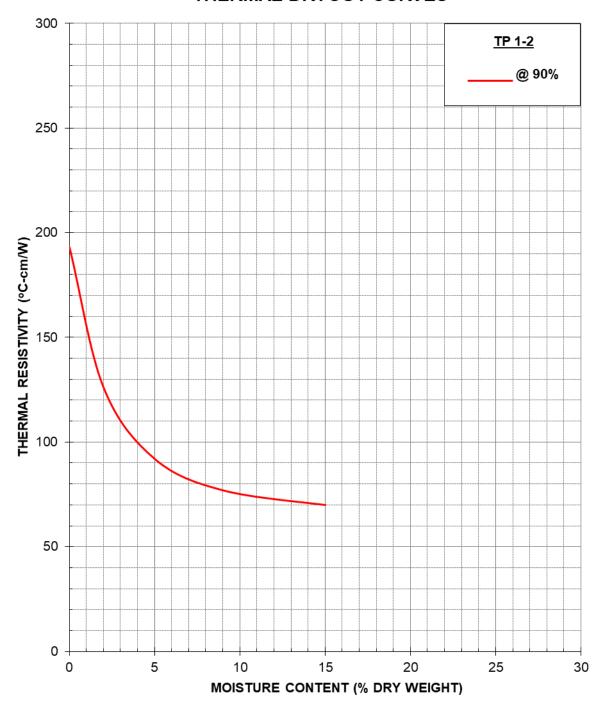

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA, LLC

Deepak Parmar

THERMAL DRYOUT CURVES

Terracon Consultants, Inc. (Project No. 61195223)

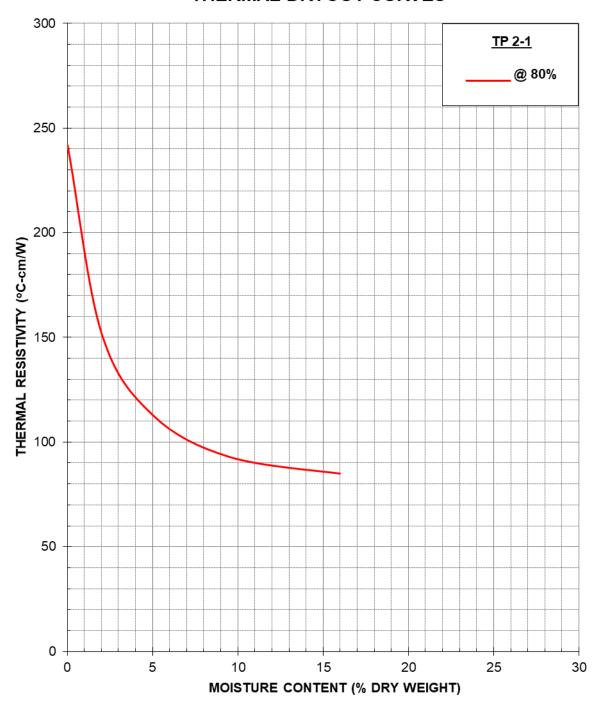

Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO

January 2021 Figure 1

THERMAL DRYOUT CURVES

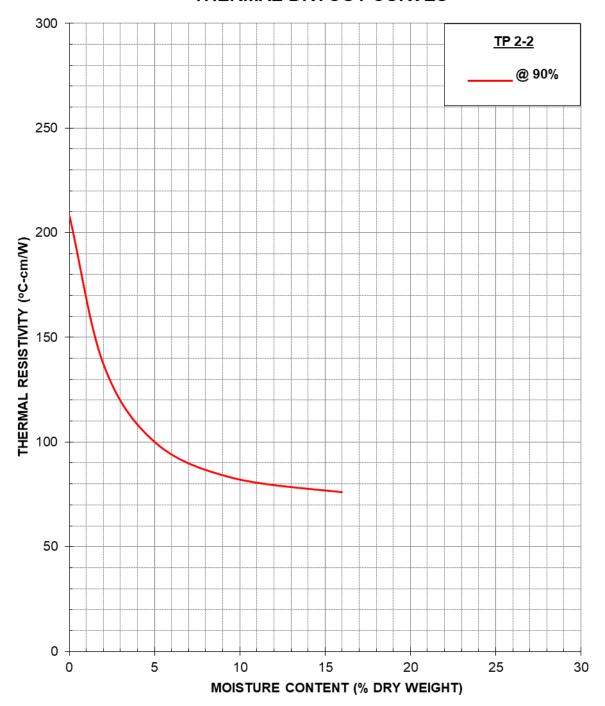
Terracon Consultants, Inc. (Project No. 61195223)


Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO

January 2021 Figure 2

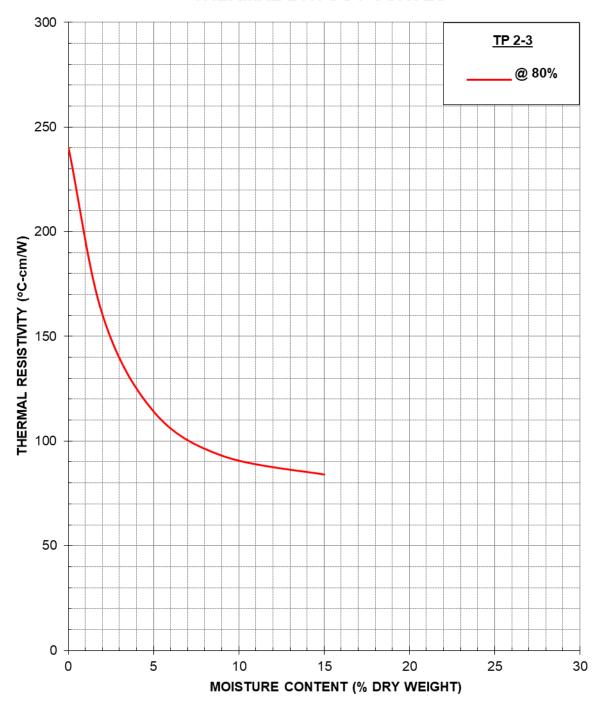
THERMAL DRYOUT CURVES


Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO

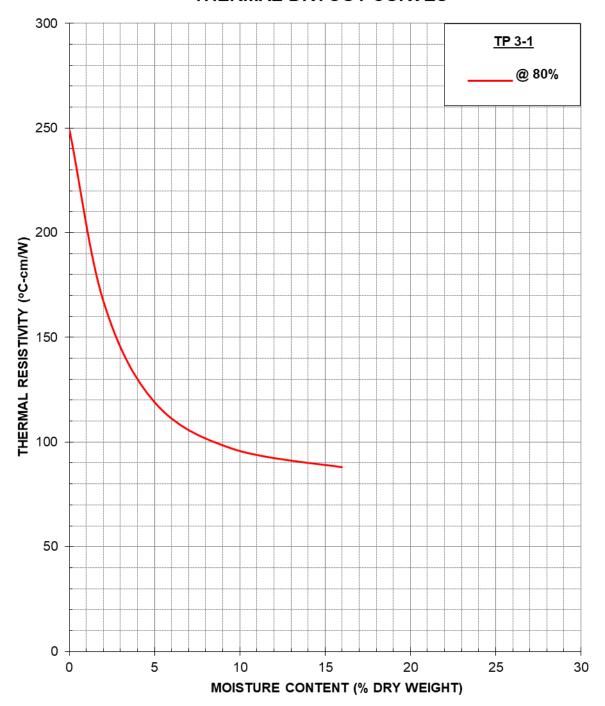
January 2021 Figure 3



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

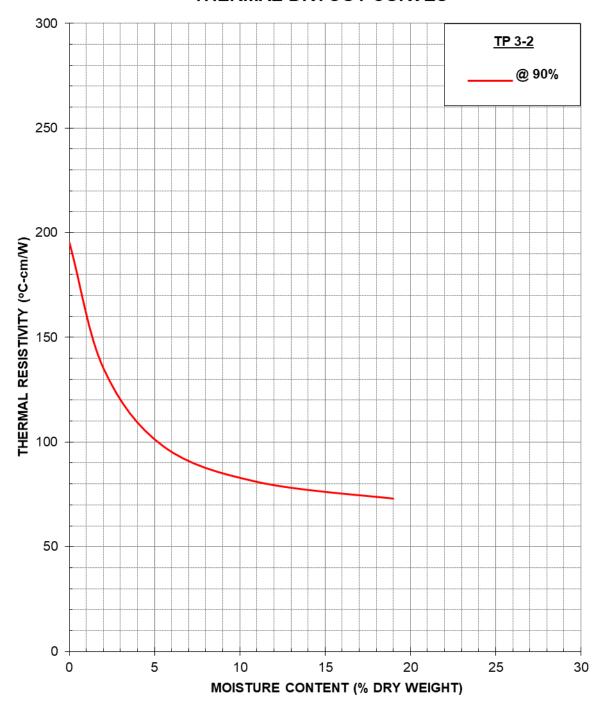
Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

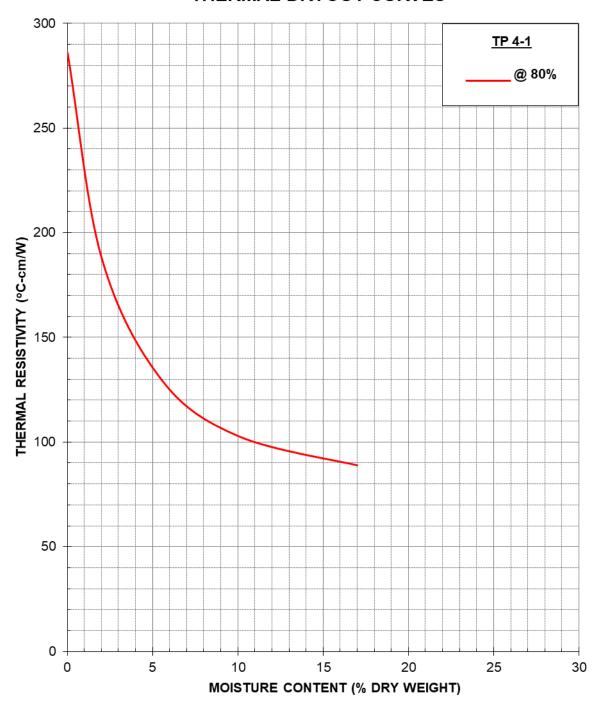
Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

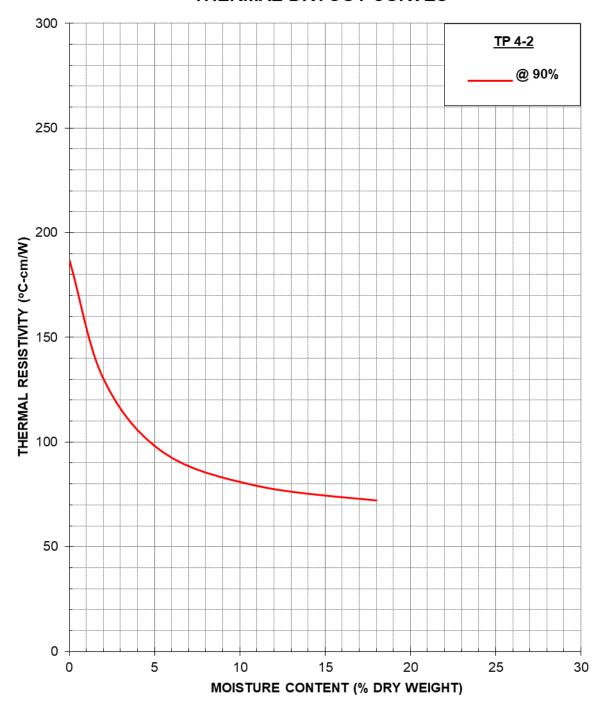
Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO

Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO

January 13, 2021

21239 FM529 Rd., Bldg. F Cypress, TX 77433

Tel: 281-985-9344 Fax: 832-427-1752 info@geothermusa.com

http://www.geothermusa.com

Terracon Consultants, Inc. 6949 S. High Tech Drive Midvale UT 84047 Attn: Charles Molthen, P.E.

Re: Thermal Analysis of Native Soil Samples

tube samples of native soil from the referenced project sent to our laboratory.

below and the thermal dry out curves are presented in Figures 1 to 8.

The following is the report of thermal dryout characterization tests conducted on eight (8)

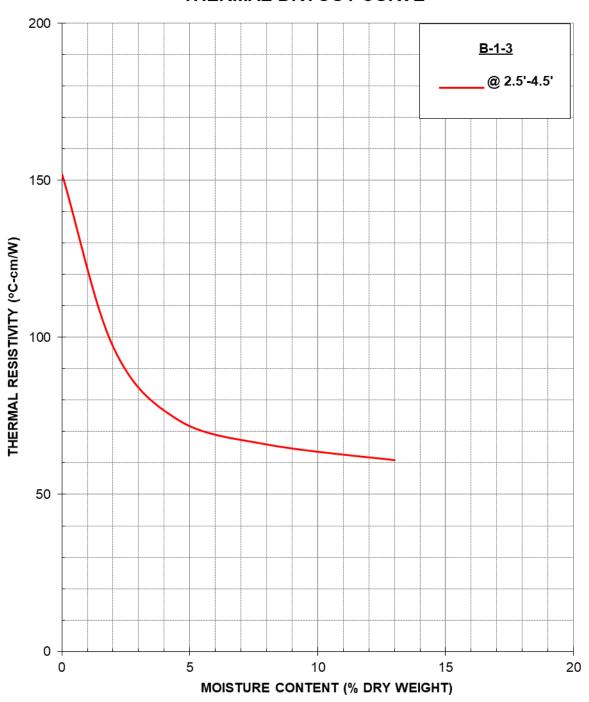
Dolores Canyon Solar Project - Cahone, CO (Project No. 61195223)

<u>Thermal Resistivity Tests:</u> These samples were tested 'as received'. The tests were conducted in accordance with the IEEE standard 442-2017. The results are tabulated

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample	Depth	Description	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density
ID	(ft)	(Terracon)	Wet	Dry	(%)	(lb/ft³)
B-1-3	2.5'-4.5'	Lean clay with sand	61	152	13	109
B-2-4	2.5'-4.5'	Lean clay	60	148	13	104
B-3-2	2.5'-4.5'	Lean clay with sand	95	183	8	109
B-4-3	2.5'-4.5'	Lean clay	62	123	12	119
B-6-1	7.5'-8.8'	Clayey sand	66	130	10	108
B-6-2	5.0'-7.0'	Lean clay with sand	74	170	11	100
B-6-3	5.0'-7.0'	Lean clay with sand	51	122	15	116
B-6-4	5.0'-7.0'	Lean clay with sand	60	150	13	112

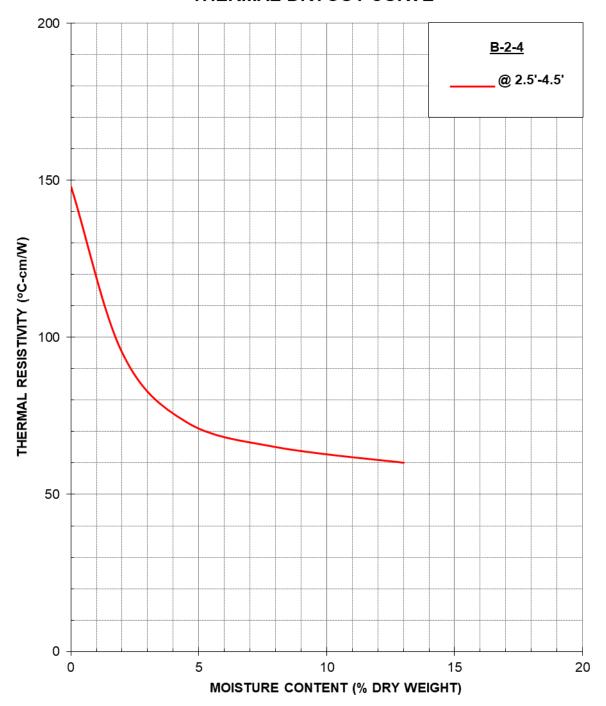
COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION


<u>Comments:</u> The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA, LLC

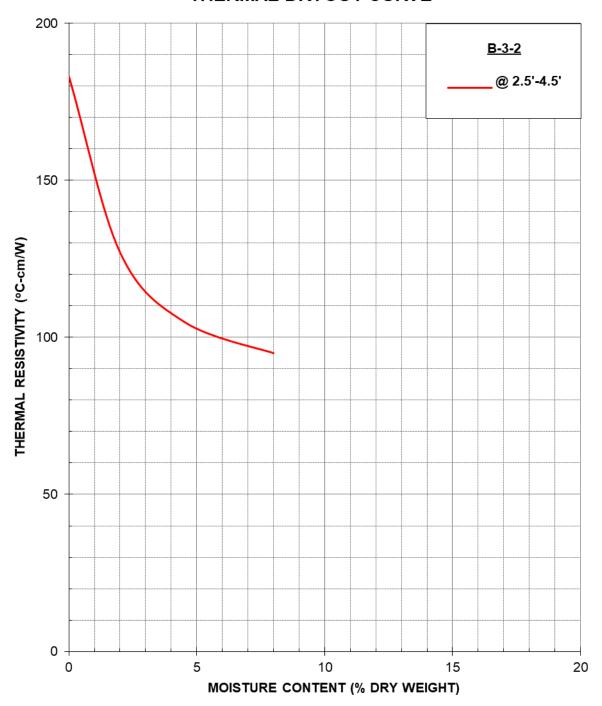
Deepak Parmar



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

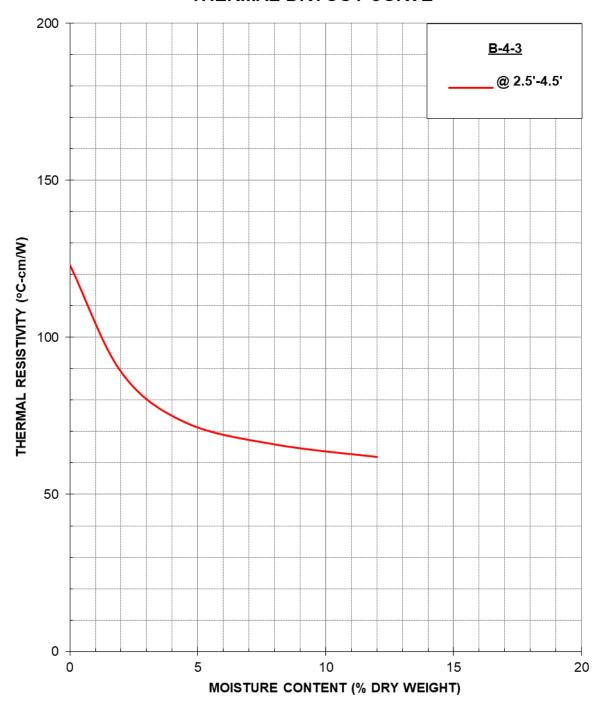
Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

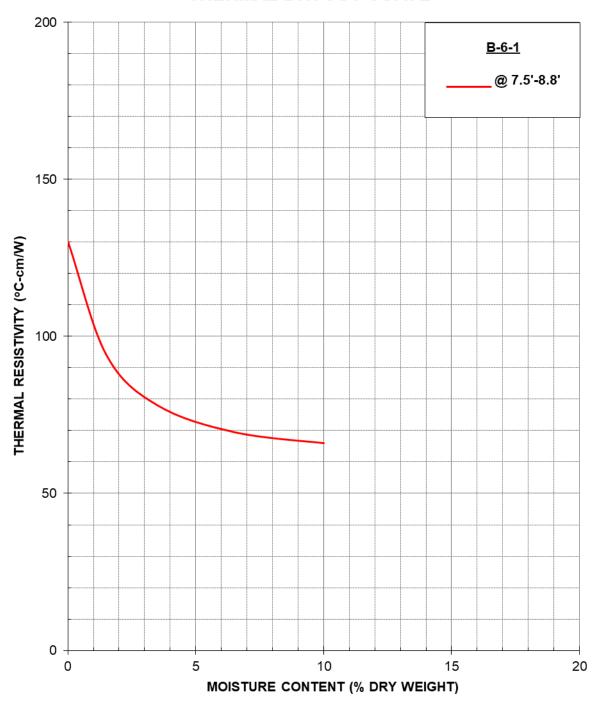
Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

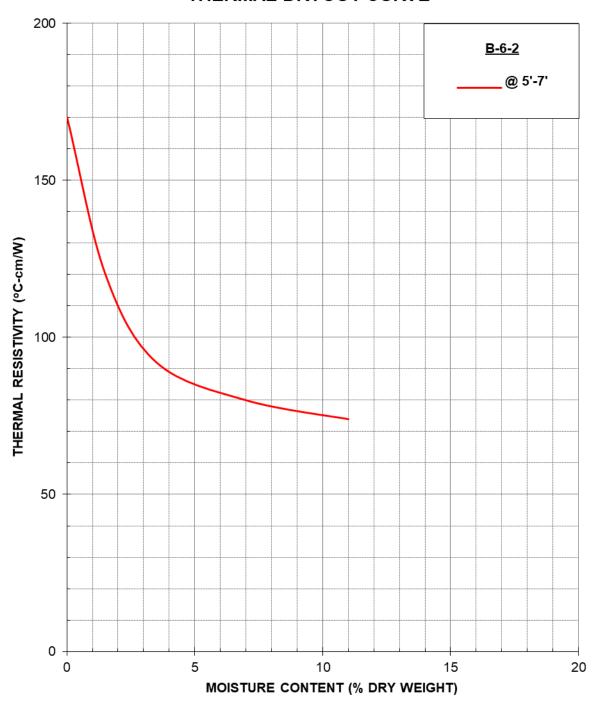
Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

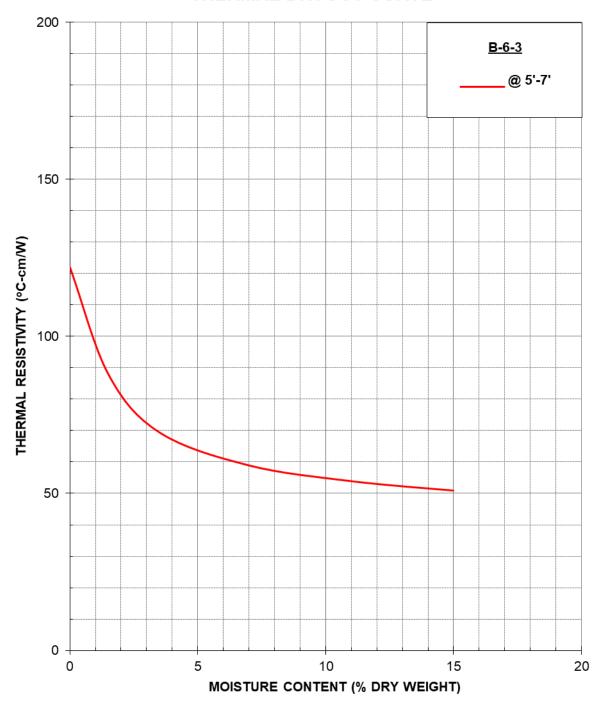
Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

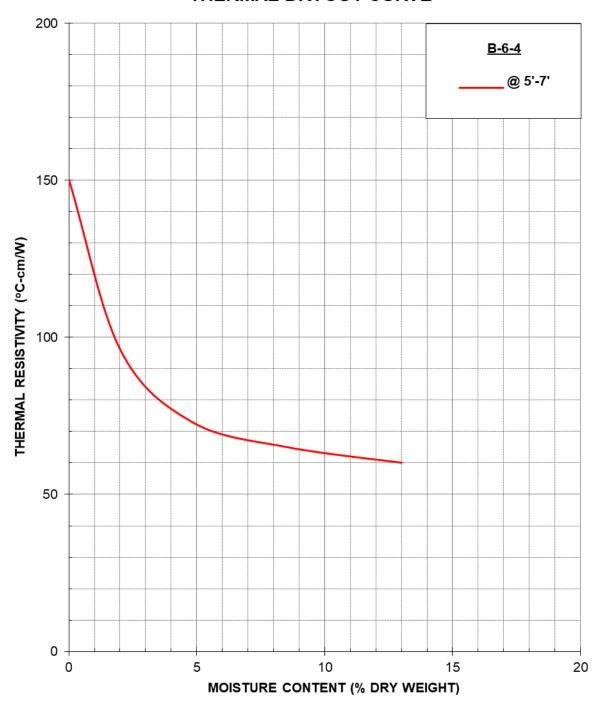
Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO



Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO

Terracon Consultants, Inc. (Project No. 61195223)

Thermal Analysis of Native Soils

Dolores Canyon Solar Project – Cahone, CO

21239 FM529 Rd., Bldg. F

Cypress, TX 77433
Tel: 281-985-9344
Fax: 832-427-1752
info@geothermusa.com

http://www.geothermusa.com

June 2, 2020

Terracon Consultants 6949 S. High Tech Drive Midvale UT 84047 Attn: Charles Molthen

Re: Thermal Analysis of Native Soil Samples JSI Dolores Canyon Solar Project – Boulder, CO (Project No. 61195223)

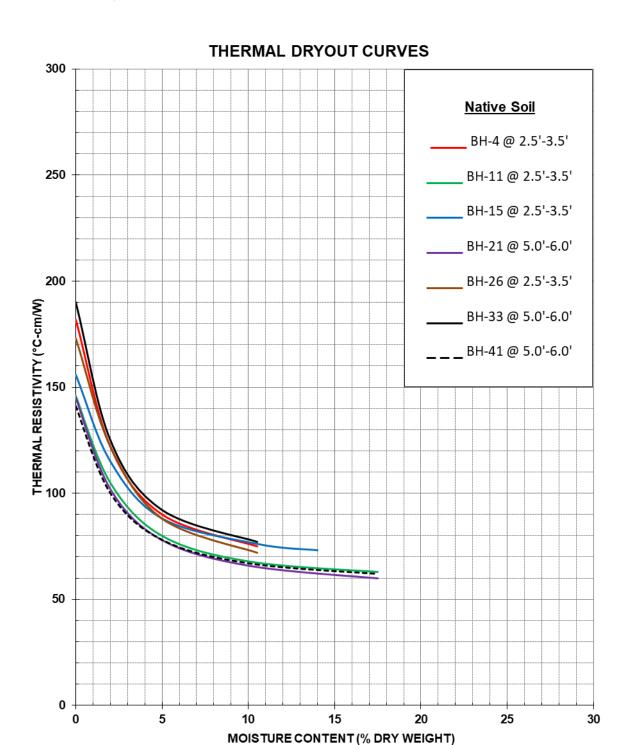
The following is the report of thermal dryout characterization tests conducted on seven (7) tube samples of native soil from the referenced project sent to our laboratory.

<u>Thermal Resistivity Tests:</u> The samples were tested "as is". The tests were conducted in accordance with the IEEE standard 442-2017. The results are tabulated below and the thermal dry out curves are presented in **Figure 1.**

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description	Thermal Re (°C-cn	•	Moisture Content	Dry Density
	(Terracon)	Wet	Dry	(%)	(lb/ft ³)
BH-4 @ 2.5'-3.5'	Sandy Lean Clay	75	182	10	88
BH-11 @ 2.5'-3.5'	Sandy Lean Clay	63	146	17	109
BH-15 @ 2.5'-3.5'	Sandy Lean Clay	73	156	14	100
BH-21 @ 5.0'-6.0'	Sandy Lean Clay	60	145	18	108
BH-26 @ 2.5'-3.5'	Sandy Lean Clay	72	173	11	83
BH-33 @ 5.0'-6.0'	Sandy Lean Clay	77	190	11	101
BH-41 @ 5.0'-6.0'	Sandy Lean Clay	62	141	17	111

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION


<u>Comments:</u> The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

Nimesh Patel

21239 FM529 Rd., Bldg. F

Cypress, TX 77433
Tel: 281-985-9344
Fax: 832-427-1752
info@geothermusa.com

http://www.geothermusa.com

June 22, 2020

Terracon Consultants 6949 S. High Tech Drive Midvale UT 84047 Attn: Charles Molthen

Re: Thermal Analysis of Native Soil Samples JSI Dolores Canyon Solar Project – Boulder, CO (Project No. 61195223)

The following is the report of thermal dryout characterization tests conducted on twelve (12) samples of native soil from the referenced project sent to our laboratory.

<u>Thermal Resistivity Tests:</u> The samples were compacted at 'optimum' moisture content and at 80% and/or 90% of the maximum dry density *provided by Terracon*. The tests were conducted in accordance with the IEEE standard 442-2017. The results are tabulated below and the thermal dry out curves are presented in **Figures 1 to 12.**

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Effort	Description	Thermal R	•	Moisture Content	Dry Density (lb/ft³)
		(Terracon)	Wet	Dry	(%)	
TP-1 @ 3'-3.5'	80%	Lean Clay	105	236	15	87
1P-1 @ 3-3.5	90%	Lean Clay	87	180	15	98
TP-2 @ 3'-3.5'	80%	Lean Clay with Sand	128	266	16	88
TD 4 @ 2' 2 5'	80%	Lean Clay with Sand	102	237	4.4	90
TP-4 @ 3'-3.5'	90%		79	182	14	112
TP-7 @ 3'-3.5'	80%	Loop Clay with Sand	115	278	14	85
1F-7 \(\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tinit}\\ \text{\text{\text{\text{\tinit}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\tittt{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\tex{\tex	90%	Lean Clay with Sand	94	199	14	96

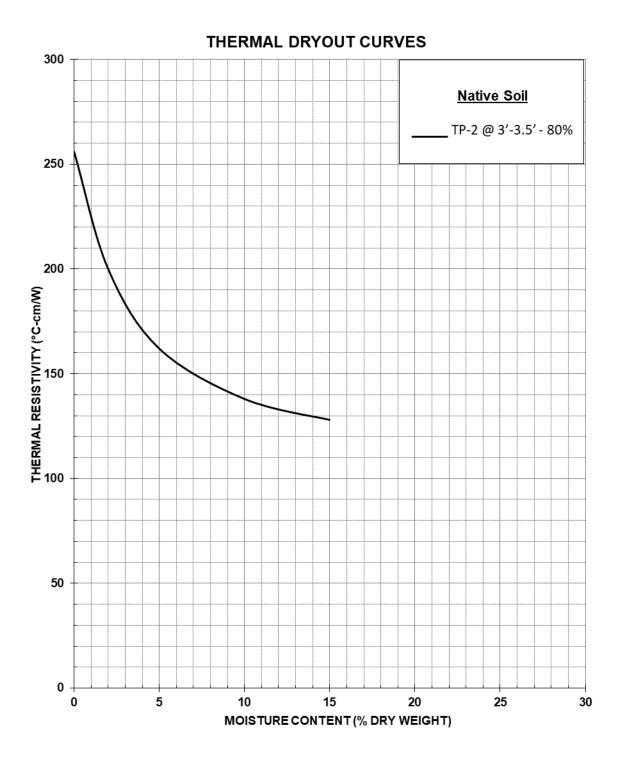
COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

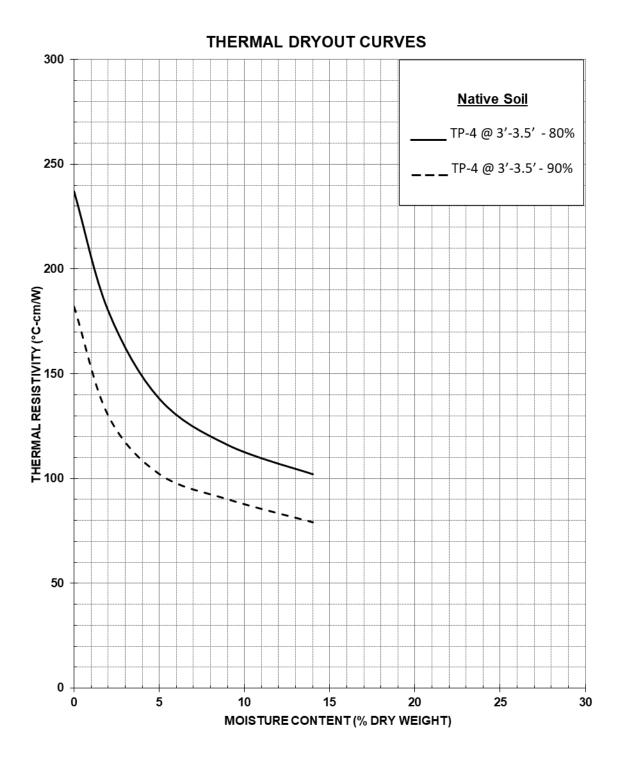
Sample ID	Effort	Effort Description		Thermal Resistivity (°C-cm/W)		Dry Density	
		(Terracon)	Wet	Dry	(%)	(lb/ft³)	
TP-8 @ 3'-3.5'	80%	Lean Clay	118	266	15	89	
TP-10 @ 3'-3.5'	80%	Lean Clay with Sand	133	285	10	85	
TP-12 @ 3'-3.5'	80%	Lean Clay with Sand	119	235	16	87	
TD 45 @ 2' 2 5'	80%	Loon Clay with Cand	122	257	14	87	
TP-15 @ 3'-3.5'	90%	Lean Clay with Sand	92	181	14	98	
TP-18 @ 3'-3.5'	80%	Lean Clay with Sand	115	244	14	90	
TP-20 @ 3'-3.5'	80%	Loop Clay with Sand	121	263	15	87	
18-20 @ 3-3.5	90%	Lean Clay with Sand	93	185	15	98	
TP-22 @ 1.5'-2'	80%	Sandy Lean Clay	129	270	15	86	
TD 04 @ 01 0 51	80%	Loop Clay with Sand	104	249	1.4	89	
TP-24 @ 3'-3.5'	90%	Lean Clay with Sand	83	177	14	101	

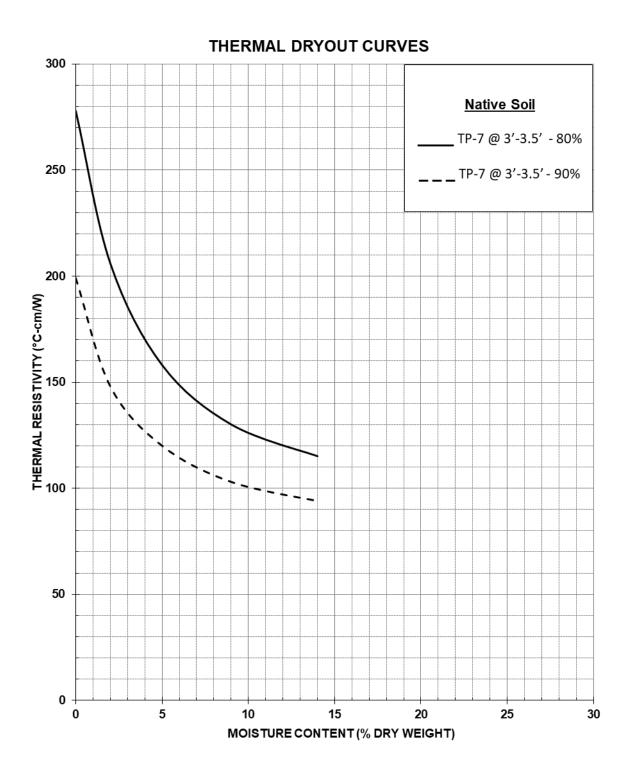

<u>Comments:</u> The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.

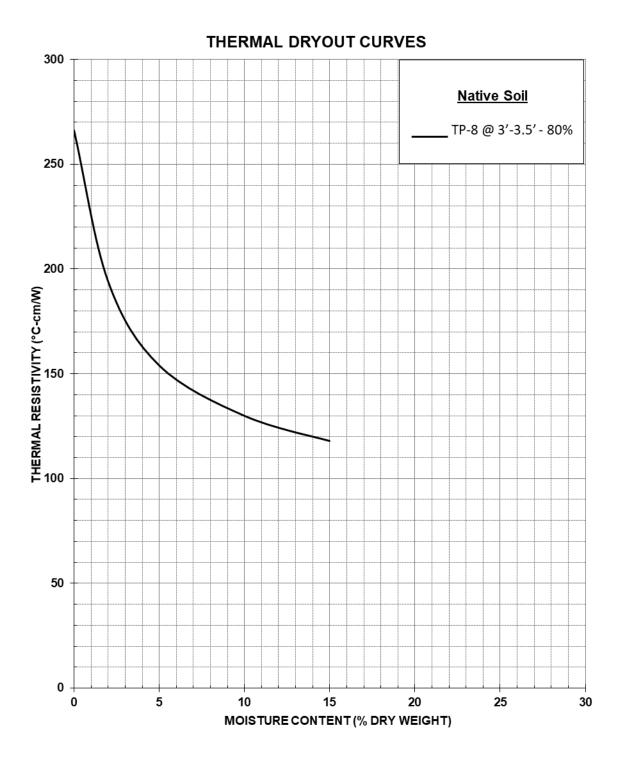
Please contact us if you have any questions or if we can be of further assistance.

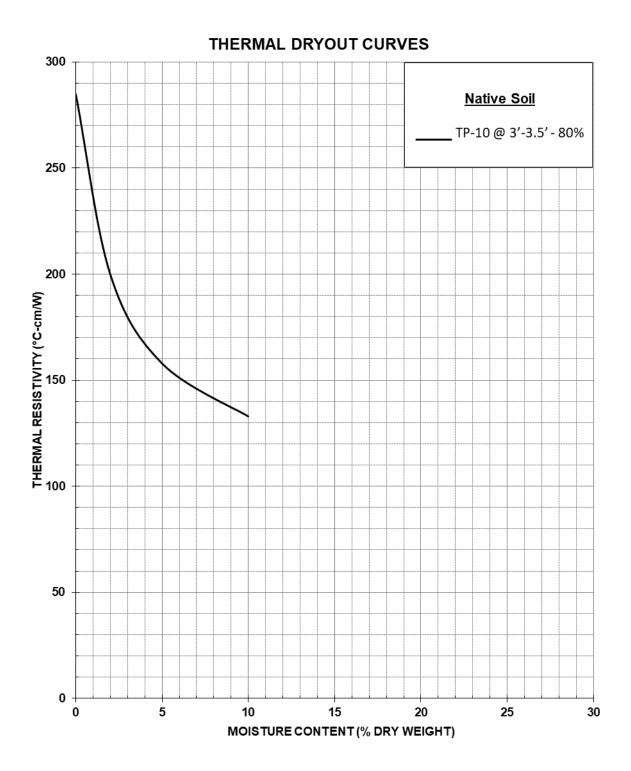

Geotherm USA

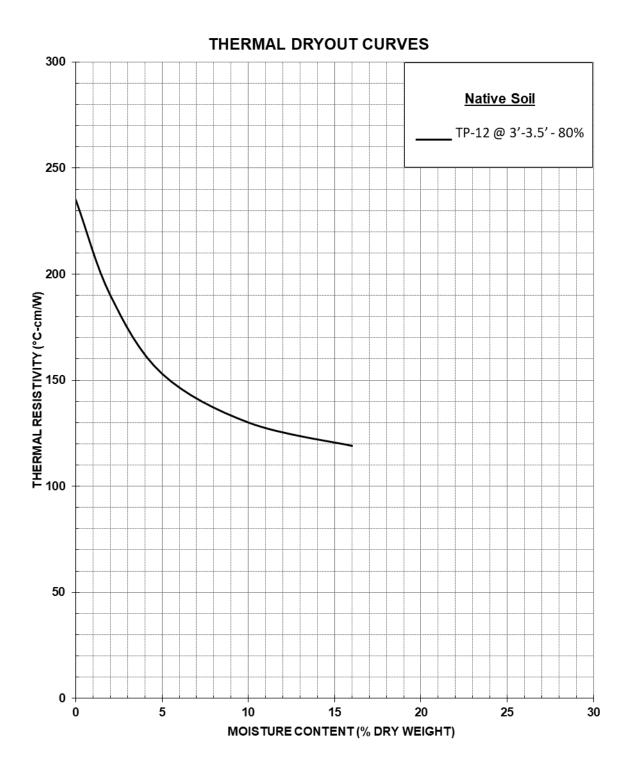
Nimesh Patel

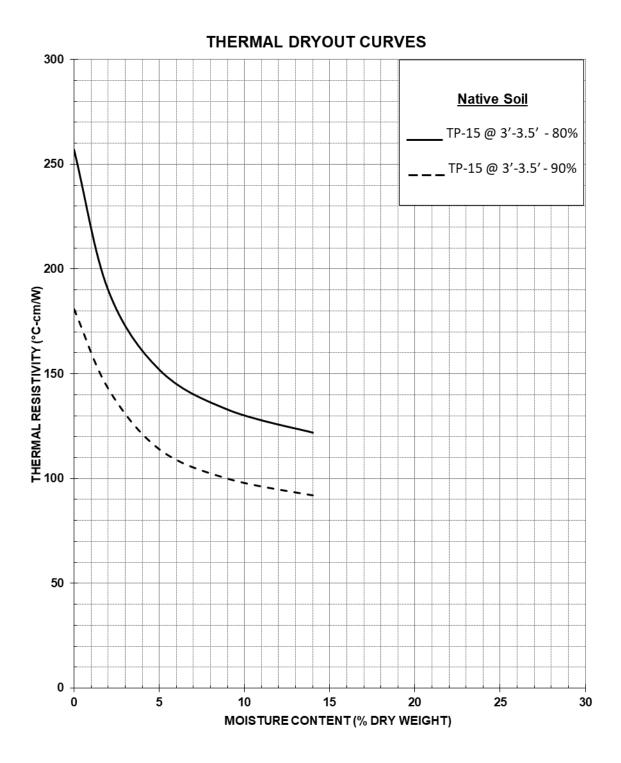


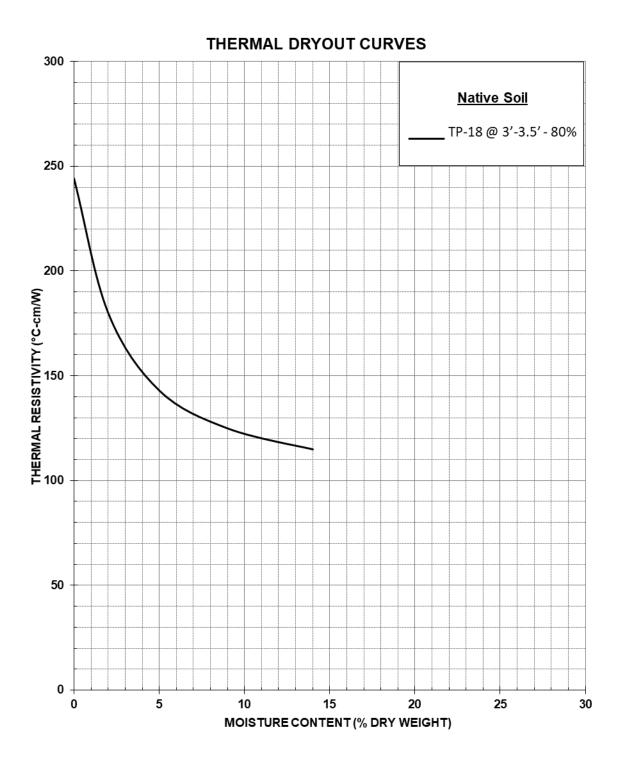


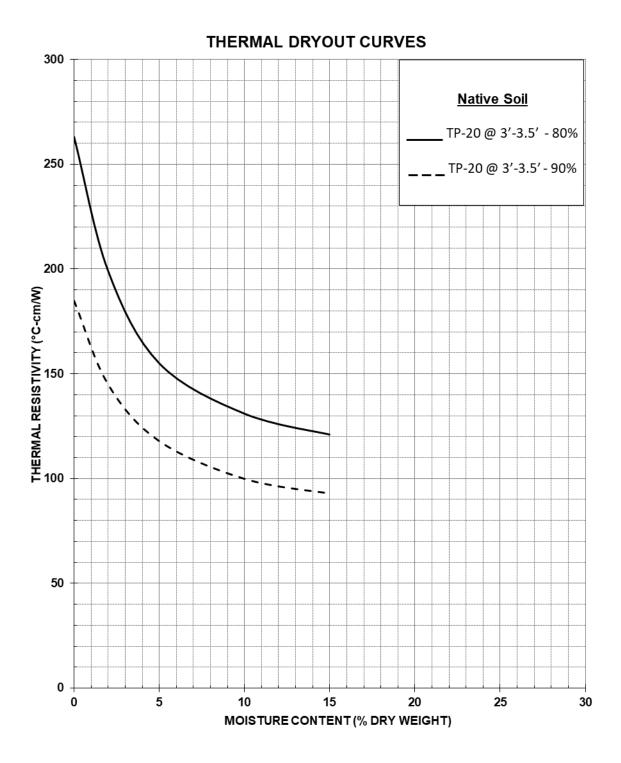


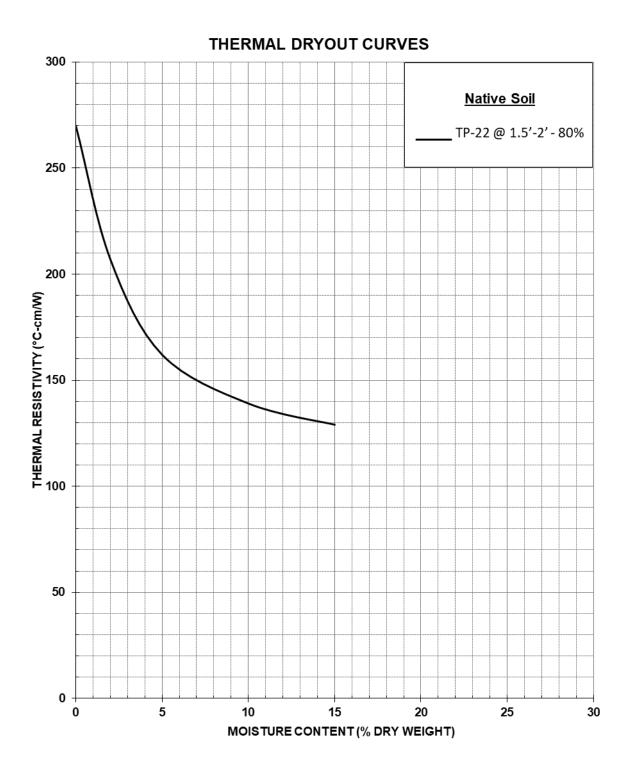


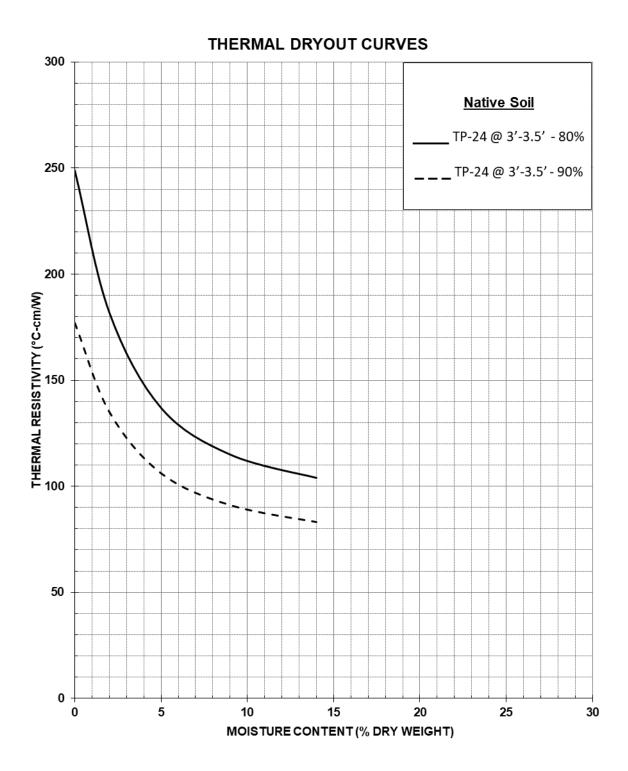












750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Client

Project

JSI Construction Group LLC

Dolores Canyon Solar Project

Sample Submitted By: Terracon (61) Date Received: 5/26/2020 Lab No.: 20-0739

Results of Corrosion Analysis							
Sample Number							
Sample Location	BH-2	BH-4	BH-6	BH-8			
Sample Depth (ft.)	0.0-2.0	5.0-7.0	7.5-9.5	0.0-2.0			
pH Analysis, ASTM G 51	7.13	7.49	7.88	7.45			
Water Soluble Sulfate (SO4), ASTM C 1580 (ppm)	133	138	113	127			
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil			
Chlorides, ASTM D 512, (ppm)	27	30	33	33			
Red-Ox, ASTM G 200, (mV)*	+687	+690	+684	+695			
Resistivity (As-Received), ASTM G 187, (ohm-cm)	19400	6499	4171	2813			
Resistivity (Saturated), ASTM G 187, (ohm-cm)	2546	1943	1742	2613			

*Measured using a Ag/AgCl electrode

Analyzed By:

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Client
JSI Construction Group LLC

Project

Dolores Canyon Solar Project

Sample Submitted By: Terracon (61) Date Received: 5/26/2020 Lab No.: 20-0739

Results of Corrosion Analysis							
Sample Number							
Sample Location	BH-10	BH-12	BH-14	BH-16			
Sample Depth (ft.)	2.5-4.5	7.5-9.5	5.0-7.0	2.5-4.5			
pH Analysis, ASTM G 51	7.58	7.70	7.63	7.70			
Water Soluble Sulfate (SO4), ASTM C 1580 (ppm)	122	171	107	37			
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil			
Chlorides, ASTM D 512, (ppm)	33	27	38	63			
Red-Ox, ASTM G 200, (mV)*	+690	+691	+690	+687			
Resistivity (As-Received), ASTM G 187, (ohm-cm)	1746	3977	1843	2619			
Resistivity (Saturated), ASTM G 187, (ohm-cm)	1072	1876	1608	1742			

*Measured using a Ag/AgCl electrode

Analyzed By:

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

JSI Construction Group LLC

Client

Project

Dolores Canyon Solar Project

Sample Submitted By: Terracon (61)

Date Received: 5/26/2020

Lab No.: 20-0739

Results of Corrosion Analysis							
Sample Number							
Sample Location	BH-18	BH-20	BH-22	BH-24			
Sample Depth (ft.)	2.0-4.0	7.5-9.5	2.5-4.5	0.0-2.0			
pH Analysis, ASTM G 51	7.98	8.26	8.11	7.90			
Water Soluble Sulfate (SO4), ASTM C 1580 (ppm)	128	163	189	68			
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil			
Chlorides, ASTM D 512, (ppm)	55	52	43	50			
Red-Ox, ASTM G 200, (mV)*	+685	+684	+686	+688			
Resistivity (As-Received), ASTM G 187, (ohm-cm)	4171	2813	2910	3007			
Resistivity (Saturated), ASTM G 187, (ohm-cm)	2077	2211	2613	2613			

*Measured using a Ag/AgCl electrode

Analyzed By:

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Client

Project

JSI Construction Group LLC

Dolores Canyon Solar Project

Sample Submitted By: Terracon (61) Date Received: 5/26/2020 Lab No.: 20-0739

Results of Corrosion Analysis												
Sample Number												
Sample Location	BH-26	BH-29	BH-30	BH-32								
Sample Depth (ft.)	5.0-6.5	2.5-4.5	5.0-7.0	2.5-4.5								
pH Analysis, ASTM G 51	8.37	8.01	8.15	8.01								
Water Soluble Sulfate (SO4), ASTM C 1580 (ppm)	147	75	32	145								
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil								
Chlorides, ASTM D 512, (ppm)	40	38	52	33								
Red-Ox, ASTM G 200, (mV)*	+687	+689	+686	+685								
Resistivity (As-Received), ASTM G 187, (ohm-cm)	1940	13580	5917	8148								
Resistivity (Saturated), ASTM G 187, (ohm-cm)	1876	2546	4355	3350								

*Measured using a Ag/AgCl electrode

Analyzed By:

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Client

Project

JSI Construction Group LLC

Dolores Canyon Solar Project

Sample Submitted By: Terracon (61) Date Received: 5/26/2020 Lab No.: 20-0739

Results of Corrosion Analysis												
Sample Number												
Sample Location	BH-34	BH-36	BH-38	BH-40								
Sample Depth (ft.)	7.5-8.5	5.0-7.0	2.5-3.5	5.0-7.0								
pH Analysis, ASTM G 51	8.27	8.20	8.07	7.64								
Water Soluble Sulfate (SO4), ASTM C 1580 (ppm)	47	54	195	197								
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil								
Chlorides, ASTM D 512, (ppm)	72	27	58	120								
Red-Ox, ASTM G 200, (mV)*	+683	+688	+683	+678								
Resistivity (As-Received), ASTM G 187, (ohm-cm)	17460	5432	3589	4268								
Resistivity (Saturated), ASTM G 187, (ohm-cm)	1809	3015	2278	1407								

*Measured using a Ag/AgCl electrode

Analyzed By:

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Client Project

JSI Construction Group LLC Dolores Canyon Solar Project

Sample Submitted By: Terracon (61) Date Received: 5/26/2020 Lab No.: 20-0739

Results of Corrosion Analysis

Sample Number		
Sample Location	BH-42	BH-44
Sample Depth (ft.)	2.5-3.5	2.5-3.5
pH Analysis, ASTM G 51	8.44	8.16
Water Soluble Sulfate (SO4), ASTM C 1580 (ppm)	171	156
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil
Chlorides, ASTM D 512, (ppm)	43	40
Red-Ox, ASTM G 200, (mV)*	+684	+685
Resistivity (As-Received), ASTM G 187, (ohm-cm)	8827	3298
Resistivity (Saturated), ASTM G 187, (ohm-cm)	2881	2211

*Measured using a Ag/AgCl electrode

Analyzed By:

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Client

JSI Construction Group LLC

Project

Dolores Canyon Solar Project

Sample Submitted By: Terracon (61) Date Received: 5/26/2020 Lab No: 20-0739

Results of Chemical Analysis												
	Sample Location	Sample Depth (ft.)	Buffer Capacity, ASTM E1910 (milliequivalents of base per gram of product) *reagent: 0.05 N HCI	Neutral Salts, WREP-125, 4th ed (dS m ⁻¹)								
	BH-2	0.0 - 2.0	0.057	2.20E-04								
	BH-4	5.0 - 7.0	0.035	1.70E-04								
	BH-6	7.5 - 9.5	0.070	2.17E-04								
	BH-8	0.0 - 2.0	0.025	1.01E-04								
	BH-10	2.5 - 4.5	0.040	1.89E-04								
	BH-12	7.5 - 9.5	0.055	2.23E-04								
	BH-14	5.0 - 7.0	0.035	2.09E-04								
	BH-16	2.5 - 4.5	0.045	3.51E-04								
	BH-18	2.0 - 4.0	0.055	3.11E-04								
	BH-20	7.5 - 9.5	0.045	3.20E-04								
	BH-22	2.5 - 4.5	0.045	2.13E-04								
	BH-24	0.0 - 2.0	0.060	5.33E-04								
	BH-26	5.0 - 6.5	0.060	4.59E-04								
	BH-29	2.5 - 4.5	0.040	2.11E-04								
	BH-30	5.0 - 7.0	0.025	5.27E-04								
	BH-32	2.5 - 4.5	0.065	4.80E-04								
	BH-34	7.5 - 8.5	0.080	4.86E-04								
	BH-36	5.0 - 7.0	0.070	3.06E-04								
	BH-38	2.5 - 3.5	0.055	3.99E-04								
	BH-40	5.0 - 7.0	0.060	6.38E-04								
	BH-42	2.5 - 4.5	0.045	4.32E-04								
	BH-44	2.5 - 4.5	0.040	7.14E-04								

Analyzed By

Trisha Campo Chemist

The tests were performed in general accordance with applicable ASTM test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

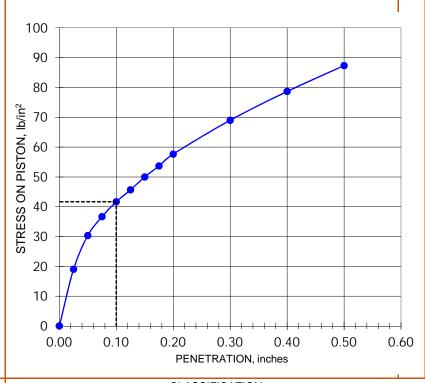
SIEVE	PERCENT						
SIZE	PASSING						
No. 10	100						
No. 20	100						
No. 40	100						
No. 80	99						
No. 100	99						
No. 200	83						

Optimum Moisture, %: 15.7 (ZERO AIR VOIDS FOR SPECIFIC GRAVITY OF 2.6) 115 110 DRY DENSITY, Ib/ft³ 105 100 10 12 14 16 18 20 22 24 26 28 30 WATER CONTENT, %

110.5

Test Method: ASTM D 698

Maximum Dry Density, lb/ft³:


Liquid Limit: 31
Plasticity Index: 17

CALIFORNIA BEARING RATIO

Dry Density,

Before Soaking, lb/ft³: 106.8
After Soaking, lb/ft³: 105.3
Relative Compaction, %: 97
Moisture Content,
Before Compaction, %: 15.8
Top 1-inch After Soaking, %: 19.2

Average After Soaking, %: 19.1
Surcharge Weight, lb: 10
Soaking Period, hr: 96
Swell, %: 1.4
CBR Value, %: 4.2

SAMPLE - IDENTIFICATION

TP-2 @ 3

CLASSIFICATION
Lean Clay with Sand (CL)

GRADATION, MOISTURE-DENSITY AND CALIFORNIA BEARING RATIO TEST RESULTS

Project Name: JSI - Dolores Canyon Solar Project

SIEVE	PERCENT
SIZE	PASSING
No. 20	100
No. 40	100
No. 80	99
No. 100	99
No. 200	87

Maximum Dry Density, lb/ft³: 111.2 Test Method: ASTM D 698 Optimum Moisture, %: 14.5 (ZERO AIR VOIDS FOR SPECIFIC GRAVITY OF 2.6) 115 110 DRY DENSITY, Ib/ft3 105 100 10 12 14 16 18 20 22 24 26 28 30 WATER CONTENT, %

Liquid Limit: 29
Plasticity Index: 15

CALIFORNIA BEARING RATIO

Dry Density,

Before Soaking, lb/ft³: 111.2
After Soaking, lb/ft³: 108.5
Relative Compaction, %: 100
Moisture Content,
Before Compaction, %: 15.5
Top 1-inch After Soaking, %: 19.1
Average After Soaking, %: 18.2

Surcharge Weight, lb: 10
Soaking Period, hr: 96
Swell, %: 1.1

3.2

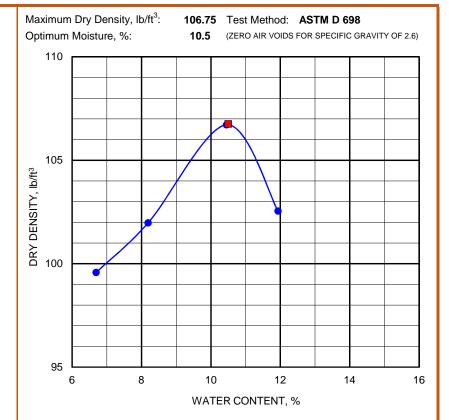
100 90 80 lb/in² STRESS ON PISTON, 60 50 40 30 20 10 0 0.00 0.10 0.20 0.40 0.50 0.30 0.60 PENETRATION, inches

SAMPLE - IDENTIFICATION

TP-8 @ 3

CBR Value, %:

CLASSIFICATION
Lean Clay (CL)



GRADATION, MOISTURE-DENSITY AND CALIFORNIA BEARING RATIO TEST RESULTS

Project Name: JSI - Dolores Canyon Solar Project

OIW (D) (IIOI	
SIEVE	PERCENT
SIZE	PASSING
3/8"	100
No. 4	100
No. 8	99
No. 10	99
No. 20	99
No. 40	99
No. 80	98
No. 100	97
No. 200	83

Liquid Limit: 28
Plasticity Index: 15

CALIFORNIA BEARING RATIO

Dry Density,

Before Soaking, lb/ft³: 106.9
After Soaking, lb/ft³: 104.0
Relative Compaction, %: 100
Moisture Content,
Before Compaction, %: 10.5

Top 1-inch After Soaking, %: 20.9
Average After Soaking, %: 18.7
Surcharge Weight, lb: 10
Soaking Period, hr: 96
Swell, %: 2.2

3.6

120 100 PISTON, Ib/in² 80 60 STRESS ON 40 20 0.00 0.10 0.20 0.30 0.40 0.50 0.60 PENETRATION, inches

SAMPLE - IDENTIFICATION

TP-10 @ 3

CBR Value, %:

CLASSIFICATION

Lean Clay with Sand (CL)

GRADATION, MOISTURE-DENSITY AND CALIFORNIA BEARING RATIO TEST RESULTS

Project Name: JSI - Dolores Canyon Solar Project

OKABATIO	IN INCOUL
SIEVE	PERCENT
SIZE	PASSING
3/8"	100
No. 4	100
No. 8	100
No. 10	100
No. 20	100
No. 40	100
No. 80	99
No. 100	98
No. 200	83

115 105 100 8 10 12 14 16 18

WATER CONTENT, %

112.9

14.2

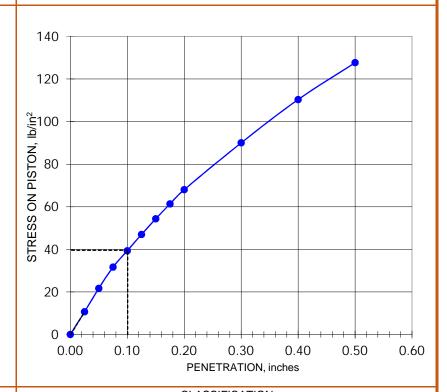
Test Method: ASTM D 698

(ZERO AIR VOIDS FOR SPECIFIC GRAVITY OF 2.6)

Maximum Dry Density, lb/ft3:

Optimum Moisture, %:

120


Liquid Limit: 28
Plasticity Index: 11

CALIFORNIA BEARING RATIO

Dry Density,

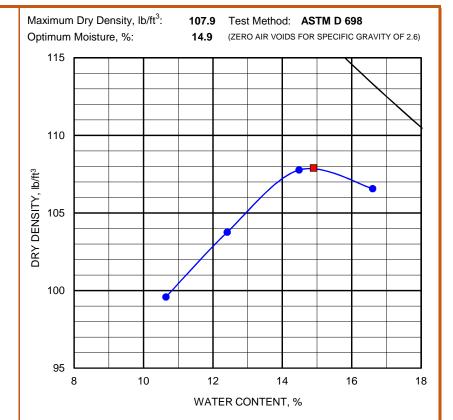
Before Soaking, lb/ft³: 112.2
After Soaking, lb/ft³: 111.0
Relative Compaction, %: 99
Moisture Content,
Before Compaction, %: 14.7

Top 1-inch After Soaking, %: 17.5
Average After Soaking, %: 16.4
Surcharge Weight, lb: 10
Soaking Period, hr: 96
Swell, %: 0.8
CBR Value, %: 4.0

SAMPLE - IDENTIFICATION

TP-10 @ 3

CLASSIFICATION
Lean Clay with Sand (CL)

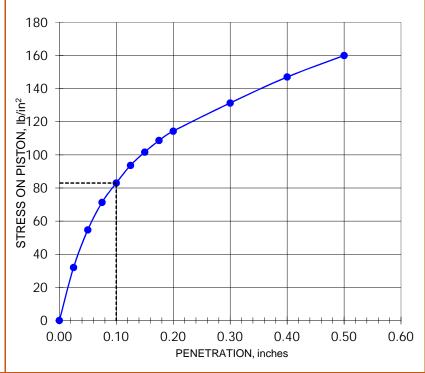


GRADATION, MOISTURE-DENSITY AND CALIFORNIA BEARING RATIO TEST RESULTS

Project Name: JSI - Dolores Canyon Solar Project

GRADATIO	NKLSULI
SIEVE	PERCENT
SIZE	PASSING
1/2"	100
3/8"	99
No. 4	99
No. 8	98
No. 10	97
No. 20	95
No. 40	92
No. 80	83
No. 100	81
No. 200	67

Liquid Limit: 35
Plasticity Index: 17



CALIFORNIA BEARING RATIO

Dry Density,

Before Soaking, lb/ft³: 106.6
After Soaking, lb/ft³: 106.2
Relative Compaction, %: 99
Moisture Content,
Before Compaction, %: 14.1
Top 1-inch After Soaking, %: 17.9
Average After Soaking, %: 18.2

Surcharge Weight, lb: 10
Soaking Period, hr: 96
Swell, %: 1.2
CBR Value, %: 8.3

SAMPLE - IDENTIFICATION

TP-22 @ 3

CLASSIFICATION
Sandy Lean Clay (CL)

GRADATION, MOISTURE-DENSITY AND CALIFORNIA BEARING RATIO TEST RESULTS

Project Name: JSI - Dolores Canyon Solar Project

21	Borehole Depth	uscs	In-Situ P	roperties	Classification				Expansion Testing						Corrosivi			
1/15/21	No.	(ft.)	Soil	Dry Density	Water	Passing #200	Atter	berg L	imits	Dry	Water	Surcharge	Expansion (%)	Expansion Index	pН	Resistivity	Sulfates	Remarks
			Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	Density (pcf)	Content (%)	(psf)	(%)	El50	pH	(ohm-cm)	(ppm)	
CHIPMAN.GPJ	BH-1	0	CL		11													2
HIP	BH-1	5	CH		18	84	51	23	28									
AND (BH-1	12.5			14													2
20	BH-2	2.5	CL		12	85	25	16	9									
195238 US	BH-2	7.5			16													2
19523	BH-3	0	CL		14													2
J 021	BH-3	5	CL		14	84	36	16	20									
CAN.GPJ	BH-3	15			16													2
S	BH-4	2.5	CL		11	81	32	15	17									
ORE	BH-4	7.5			22													2
DOL	BH-5	0	CL		12	86	25	16	9									
JSI-	BH-5	5			14													2
61195223	BH-5	10			17													2
6119	BH-6	0	CL		12													2
ILES	BH-6	5	CL	110	16	82	32	18	14									1
PROPERTIES	BH-6	10			20													2
PRO	BH-7	2.5	CL		12													2
SOIL	BH-8	2.5	CL	107	17	88	31	16	15									1
	BH-8	12.5	CL	106	17	88	37	16	21									1
REPORT.	BH-9	2.5			16													2
	BH-10	0	CL		14													2
PARATED FROM ORIGINAL	BH-10	5	CL		24	85	48	19	29									
OMO	BH-10	10			15													2
D FR	BH-11	2.5	CL		16	85	33	16	17									
SATE	BH-11	7.5			28													2
PAF	DEMARKS		1	1					•						•	1		ı

- REMARKS

 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample.

 2. Visual Classification.

 3. Submerged to approximate saturation.

 4. Expansion Index in accordance with ASTM D4829-95.

 5. Air-Dried Sample

OT VALID IF SEP.	REMARKS 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample. 2. Visual Classification. 3. Submerged to approximate saturation. 4. Expansion Index in accordance with ASTM D4829-95. 5. Air-Dried Sample												
-0G IS N	PROJECT: JSI - Dolores Canyon Solar Project	Jlerracon	PROJECT NUMBER: 61195223										
BORING	SITE: County Road M.4 Cahone, CO	6949 S High Tech Dr Ste 100 Midvale, UT	CLIENT: JSI Construction Group LLC Boulder, CO										
THIS		PH. 801-545-8500 FAX. 801-545-8600	EXHIBIT: B-1										

21	Borehole Dep	Depth	USCS	In-Situ P	roperties	Cl	assific	ation		Expansion Testing						Corrosivi		
1/15/21	No.	(ft.)	Soil	Dry Density	Water	Passing #200	Atter	berg L	imits	Dry	Water	Surcharge	Expansion	Expansion Index	-11	Resistivity	Sulfates	Remarks
			Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	Density (pcf)	Content (%)	(psf)	Expansion (%)	El50	pН	(ohm-cm)	(ppm)	
MAN.	BH-11	12.5			13													2
CHIPMAN.GPJ	BH-12	0	CL		16													2
AND (BH-12	5	CL		12	77	31	17	14									
20	BH-12	10			12													2
95238 US	BH-13	2.5	CL		10	85	26	16	10									
	BH-14	0	CL		15													2
J 021	BH-14	2.5			14													2
CAN.GPJ	BH-14	5			17													2
က	BH-15	2.5	CL		13	85	30	16	14									
ORE	BH-15	7.5			16													2
DOL	BH-16	0	CL		16	85	29	16	13									
JSI-	BH-16	5			32													2
61195223	BH-17	2.5			17													2
6119	BH-17	7.5	CL		19	87	38	15	23									
ILES	BH-18	0	CL		18													2
PROPERTIES	BH-18	5	CL	108	21	78	36	15	21									1
PRO	BH-19	0	CL		13	87	30	16	14									
SOIL	BH-19	5			14													2
	BH-20	2.5	CL		11	85	24	16	8									
REPORT.	BH-20	10			11													2
	BH-21	5	CL		18	82	27	16	11									
PARATED FROM ORIGINAL	BH-21	7.5	CL		16	87	30	16	14									
OMC	BH-22	0	CL		13	89	30	16	14									
D FR	BH-22	5			16													2
SATE	BH-23	5	CL-ML		9	82	24	18	6									
PAF	DEMARKS		1						•						•	•		'

- REMARKS

 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample.

 2. Visual Classification.

 3. Submerged to approximate saturation.

 4. Expansion Index in accordance with ASTM D4829-95.

 5. Air-Dried Sample

Air-Dried Sample	
------------------------------------	--

LOG IS	PROJECT: JSI - Dolores Canyon Solar Project	lleccacon	PROJECT NUMBER: 61195223
BORING	SITE: County Road M.4 Cahone, CO	6949 S High Tech Dr Ste 100 Midvale, UT	CLIENT: JSI Construction Group LLC Boulder, CO
THIS		PH. 801-545-8500 FAX. 801-545-8600	EXHIBIT: B-2

21	Borehole	Depth	USCS	In-Situ P	roperties	Cl	Classification			Expansion Testing						Corrosivi		
1/15/21	No.	(ft.)	Soil	Dry Density	Water	Passing #200	Atter	berg L	imits	Dry	Water	Surcharge	Expansion (%)	Expansion Index	pН	Resistivity	Sulfates	Remarks
			Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	Density (pcf)	Content (%)	(psf)	(%)	El50	pH	(ohm-cm)	(ppm)	
CHIPMAN.GPJ	BH-23	10			20													2
HPI	BH-24	2.5	CL	93	9	83	30	16	14									1
AND (BH-24	10	CL		10	89	38	15	23									
20	BH-25	2.5	CL		22	58	35	24	11									
95238 US	BH-25	7.5			7													2
	BH-26	2.5	CL		11	79	26	15	11									
J 021	BH-26	7.5			14													2
CAN.GPJ	BH-27	0	ML		15													2
က	BH-28	0	CL		16													2
ORE	BH-28	5	CL		16	86	32	15	17									
DOL	BH-28	10			12													2
JSI-	BH-29	0	CL		7													2
61195223	BH-29	5			15													2
6119	BH-30	0	CL		12	86	30	14	16									
ILES	BH-30	7.5	CL		18	88	35	15	20									
OPERTIES	BH-31	2.5	CL	84	9	84	27	16	11									1
PRO	BH-31	7.5			10													2
SOIL	BH-32	0	CL		15													2
ORT.	BH-32	7.5			15													2
REPORT.	BH-33	0	CL		12													2
	BH-33	5	CL		9	67	33	16	17									
PARATED FROM ORIGINAL	BH-34	2.5	CL		8	83	27	15	12									
OMO	BH-34	5			14													2
D FR	BH-35	0	CL		12													2
SATE	BH-35	5			17													2
PAF	DEMARKS			•					•							•		'

- REMARKS

 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample.

 2. Visual Classification.

 3. Submerged to approximate saturation.

 4. Expansion Index in accordance with ASTM D4829-95.

 5. Air-Dried Sample

VOT VALID IF SEP	 Dry Density and/or moisture determined from one or more ring Visual Classification. Submerged to approximate saturation. 	gs of a multi-ring sample. Air-Dried Sample	
-0G IS N	PROJECT: JSI - Dolores Canyon Solar Project	Jerracon	PROJECT NUMBER: 61195223
BORINGL	SITE: County Road M.4 Cahone, CO	6949 S High Tech Dr Ste 100 Midvale, UT	CLIENT: JSI Construction Group LLC Boulder, CO
THIS		PH. 801-545-8500 FAX. 801-545-8600	EXHIBIT: B-3

21	Borehole	Depth	USCS	In-Situ P	roperties	Cl	assific	ation			Ex	pansion	Testing			Corrosivi	ty	
1/15/21	No.	(ft.)	Soil Class.	Dry Density	Water	Passing #200	Atter	berg L	imits	Dry Density	Water Content	Surcharge	Expansion (%)	Expansion Index	pН	Resistivity	Sulfates	Remarks
		,	Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	(pcf)	(%)	(psf)	(%)	El50	рп	(ohm-cm)	(ppm)	
CHIPMAN.GPJ	BH-36	0	CL		11	87	30	15	15									
를	BH-36	7.5			15													2
AND (BH-37	0	CL		12													2
20	BH-37	7	SC-SM		14	42	25	20	5									
95238 US	BH-38	0	CL		14													2
	BH-38	5			12													2
J 021	BH-39	0	CL		8													2
CAN.GPJ	BH-39	5	CL		13	85	35	15	20									
SCA	BH-40	2.5			25													2
ORE	BH-41	0	CL		17													2
Ы	BH-41	5	CL		14	84	31	15	16									
<u>- IS</u>	BH-42	0	CL		11	83	30	15	15									
61195223	BH-42	5	CL		16	83	36	16	20									
6119	BH-43	0	CL		9													2
IES	BH-44	0	CL		11													2
OPERTIES	BH-44	5	CL		14													2
PRO	BH-45	0	CL		12													2
SOIL	BH-45	5	CL		13	68	33	16	17									
	B-1-1	10			17													2
REPORT.	B-1-1	20			15													2
	B-1-2	5	CL		10	87	31	15	16									
RIGI	B-1-2	10			15													2
PARATED FROM ORIGINAL	B-1-3	2.5	CL		13	82	33	16	17									
D FR(B-1-3	7.5			16													2
ATE	B-2-1	7.5			17													2
PAR	DEMARKS	ı	l				ı				ı	ı						

- REMARKS

 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample.
 2. Visual Classification.
 3. Submerged to approximate saturation.
 4. Expansion Index in accordance with ASTM D4829-95.
 5. Air-Dried Sample

PROJECT: JSI - Dolores Canyon Solar Project	Terracon	PROJECT NUMBER: 61195223
SITE: County Road M.4 Cahone, CO	6949 S High Tech Dr Ste 100 Midvale, UT	CLIENT: JSI Construction Group LLC Boulder, CO
일본 	PH. 801-545-8500 FAX. 801-545-8600	EXHIBIT: B-4

21	Borehole	Depth	USCS	In-Situ P	roperties	Cl	assific	ation			Expansion			pansion Testing			Corrosivity			
1/15/21	No.	(ft.)	Soil Class.	Dry Density	Water	Passing #200	Atter	berg L	imits	Dry Density	Water Content	Surcharge	Expansion (%)	Expansion Index	pН	Resistivity	Sulfates	Remarks		
		,	Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	(pcf)	(%)	(psf)	(%)	El50	рп	(ohm-cm)	(ppm)			
MAN	B-2-4	2.5	CL		14	88	24	16	8											
CHIPMAN.GPJ	B-2-4	7.5			16													2		
AND (B-2-4	15			15													2		
20	B-3-1	12.5			11													2		
195238 US	B-3-2	2.5	CL		9	85	26	15	11											
1952;	B-3-3	5	CL		18	74	48	27	21											
J 021	B-3-3	15			9													2		
CAN.GPJ	B-4-1	10	CL		26													2		
ഗ	B-4-3	2.5	CL		14	87	41	19	22											
ORE	B-4-4	5	CL		11	82	34	17	17											
DOL	B-5-1	2.5	CL		11	86	29	17	12											
- ISI	B-5-1	7.5	CL		18	89	36	17	19											
61195223	B-5-2	5	CL		13	81	29	15	14											
6118	B-6-1	7.5	SM		9	40	21	18	3											
TIES	B-6-2	5	CL		13	79	41	18	23											
PROPERTIES	B-6-2	12.5			16													2		
PRO	B-6-3	5	CL		16	84	32	15	17											
SOIL	B-6-4	5	CL		13	80	27	15	12											
PORT.	TP-01	3	CL		15	87	30	14	16											
REP	TP-02	3	CL		14	83	31	14	17											
	TP-04	3	CL		16	80	26	14	12											
ORIGINAL	TP-07	3	CL		16	85	30	14	16											
FROMC	TP-08	3	CL		14	87	29	14	15											
D FR	TP-10	3	CL		9	83	28	17	11											
RATED	TP-12	3	CL		13	82	33	17	16											
PAF	DEMARKS			•					•							•				

- REMARKS

 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample.
 2. Visual Classification.
 3. Submerged to approximate saturation.
 4. Expansion Index in accordance with ASTM D4829-95.
 5. Air-Dried Sample

REMARKS 1. Dry Density and/or moisture determined from one or more rin 2. Visual Classification. 3. Submerged to approximate saturation. 4. Expansion Index in accordance with ASTM D4829-95. 5.	gs of a multi-ring sample. Air-Dried Sample									
PROJECT: JSI - Dolores Canyon Solar Project	lerracon	PROJECT NUMBER: 61195223								
SITE: County Road M.4 Cahone, CO	STE: County Road M.4 CLIENT: JSI Construc									
SE TOTAL SE LA CONTRACTION DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DEL CONTRACTION DE LA C	PH. 801-545-8500 FAX. 801-545-8600	EXHIBIT: B-5								

21	Borehole	Depth	USCS	In-Situ P	roperties	Cla	assific	ation			Ex	pansion	Testing			Corrosivi	ty	
GPJ 1/15/2	No.	(ft.)	Soil Class.	Dry Density (pcf)	Water Content (%)	Passing #200 Sieve (%)	Atter	berg L	imits	Dry Density (pcf)	Water Content (%)	Surcharge (psf)	Expansion (%)	Expansion Index EI ⁵⁰	pН	Resistivity (ohm-cm)	Sulfates (ppm)	Remarks
AAN.G	TP-15	3	CL		10	83	29	17	12	. ,	, ,							
CHIP	TP-18	3	CL		12	83	28	17	11									
AND 0	TP-20	3	CL		13	82	35	18	17									
50 A	TP-22	1.5	CL		10	67	35	18	17									
38 US	TP-24	3	CL		7	79	27	18	9									
1952	TP 1-1	3	ML			77	NP	NP	NP									
PJ 02	TP 1-2	3	CL			81	29	19	10									
AN.GP	TP 2-1	3	CL-ML			81	26	19	7									
SC	TP 2-2	3	CL			87	27	17	10									
ORE	TP 2-3	3	CL			82	26	18	8									
DD	TP 3-1	3	CL			84	30	19	11									
JSI.	TP 3-2	3	CL			78	36	19	17									
95223	TP 4-1	3	CL			76	31	18	13									
S 6119	TP 4-2	3	CL			75	34	20	14									

- Submerged to approximate saturation.
 Expansion Index in accordance with ASTM D4829-95. 5. Air-Dried Sample

AATED FROM ORIGINAL REPORT. SOIL PROPERTIES		
REMARKS 1. Dry Density and/or moisture determined from one or more ring 2. Visual Classification. 3. Submerged to approximate saturation. 4. Expansion Index in accordance with ASTM D4829-95. 5.	gs of a multi-ring sample. Air-Dried Sample	
PROJECT: JSI - Dolores Canyon Solar Project	lerracon	PROJECT NUMBER: 61195223
SITE: County Road M.4 Cahone, CO	6949 S High Tech Dr Ste 100 Midvale, UT	CLIENT: JSI Construction Group LLC Boulder, CO
SE	PH. 801-545-8500 FAX. 801-545-8600	EXHIBIT: B-6